使用定时自动机从Netflows学习行为指纹

Gaetano Pellegrino, Qin Lin, Christian A. Hammerschmidt, S. Verwer
{"title":"使用定时自动机从Netflows学习行为指纹","authors":"Gaetano Pellegrino, Qin Lin, Christian A. Hammerschmidt, S. Verwer","doi":"10.23919/INM.2017.7987293","DOIUrl":null,"url":null,"abstract":"We present a novel way to detect infected hosts and identify malware in networks by analyzing network communication statistics with state-of-the-art automata learning algorithms. The automata encode patterns of short-term interactions in known malicious hosts, and are used to obtain small but effective fingerprints of machine behavior. We showcase the effectiveness of our system, named BASTA1 (Behavioral Analytics System using Timed Automata), on a public dataset containing Netflow traces of real-world botnet malware. Compared to a deep packet inspection of communication content, Netflows are easy and cheap to collect and analyze, and preserve a greater degree of privacy. Even though the high level of abstraction in Netflow data makes it more difficult to utilize it, BASTA shows very impressive results achieving high accuracy in several settings while returning few false positives. It is also capable of detecting infections of previously unseen malware.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Learning behavioral fingerprints from Netflows using Timed Automata\",\"authors\":\"Gaetano Pellegrino, Qin Lin, Christian A. Hammerschmidt, S. Verwer\",\"doi\":\"10.23919/INM.2017.7987293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel way to detect infected hosts and identify malware in networks by analyzing network communication statistics with state-of-the-art automata learning algorithms. The automata encode patterns of short-term interactions in known malicious hosts, and are used to obtain small but effective fingerprints of machine behavior. We showcase the effectiveness of our system, named BASTA1 (Behavioral Analytics System using Timed Automata), on a public dataset containing Netflow traces of real-world botnet malware. Compared to a deep packet inspection of communication content, Netflows are easy and cheap to collect and analyze, and preserve a greater degree of privacy. Even though the high level of abstraction in Netflow data makes it more difficult to utilize it, BASTA shows very impressive results achieving high accuracy in several settings while returning few false positives. It is also capable of detecting infections of previously unseen malware.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一种新的方法来检测受感染的主机和识别网络中的恶意软件,通过分析网络通信统计与最先进的自动机学习算法。自动机对已知恶意主机的短期交互模式进行编码,并用于获取机器行为的小而有效的指纹。我们展示了我们的系统的有效性,名为BASTA1(使用时间自动机的行为分析系统),在包含现实世界僵尸网络恶意软件的Netflow痕迹的公共数据集上。与对通信内容进行深度数据包检测相比,netflow易于收集和分析,成本低廉,并且保护了更大程度的隐私。尽管Netflow数据的高度抽象使得利用它变得更加困难,但BASTA显示了非常令人印象深刻的结果,在几个设置中实现了高精度,同时返回了很少的误报。它还能够检测以前未见过的恶意软件感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning behavioral fingerprints from Netflows using Timed Automata
We present a novel way to detect infected hosts and identify malware in networks by analyzing network communication statistics with state-of-the-art automata learning algorithms. The automata encode patterns of short-term interactions in known malicious hosts, and are used to obtain small but effective fingerprints of machine behavior. We showcase the effectiveness of our system, named BASTA1 (Behavioral Analytics System using Timed Automata), on a public dataset containing Netflow traces of real-world botnet malware. Compared to a deep packet inspection of communication content, Netflows are easy and cheap to collect and analyze, and preserve a greater degree of privacy. Even though the high level of abstraction in Netflow data makes it more difficult to utilize it, BASTA shows very impressive results achieving high accuracy in several settings while returning few false positives. It is also capable of detecting infections of previously unseen malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信