基于ANFIS的城市交通估计专家系统原型开发

K. Vidović, S. Mandzuka, D. Brcic
{"title":"基于ANFIS的城市交通估计专家系统原型开发","authors":"K. Vidović, S. Mandzuka, D. Brcic","doi":"10.23919/ELMAR.2018.8534602","DOIUrl":null,"url":null,"abstract":"For the purpose of estimating urban mobility, an approach that uses urban mobility indicators calculated from the data subsystem from the Charging Data Records database in the public mobile telecommunications network was chosen. Calculated indicators are unified in the urban mobility index as a unique indicator of urban mobility in urban agglomeration. The urban mobility index is calculated using an expert system based on fuzzy logic, that is, the adaptive neuro-fuzzy inference system method (ANFIS). It functions on the principle of applying conclusion methods which characterize neural networks with the goal of determining parameters of an indirect conclusion system (Fuzzy Inference System - FIS). The prototype of the system was developed by using the appropriate application environment, where the proposed methodology was implemented.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANFIS Based Expert Systems Prototype Development for Estimation of Urban Mobility\",\"authors\":\"K. Vidović, S. Mandzuka, D. Brcic\",\"doi\":\"10.23919/ELMAR.2018.8534602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the purpose of estimating urban mobility, an approach that uses urban mobility indicators calculated from the data subsystem from the Charging Data Records database in the public mobile telecommunications network was chosen. Calculated indicators are unified in the urban mobility index as a unique indicator of urban mobility in urban agglomeration. The urban mobility index is calculated using an expert system based on fuzzy logic, that is, the adaptive neuro-fuzzy inference system method (ANFIS). It functions on the principle of applying conclusion methods which characterize neural networks with the goal of determining parameters of an indirect conclusion system (Fuzzy Inference System - FIS). The prototype of the system was developed by using the appropriate application environment, where the proposed methodology was implemented.\",\"PeriodicalId\":175742,\"journal\":{\"name\":\"2018 International Symposium ELMAR\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELMAR.2018.8534602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了估计城市流动性,选择了一种利用公共移动通信网收费数据记录数据库数据子系统计算城市流动性指标的方法。计算出的指标统一在城市流动性指数中,作为城市群城市流动性的唯一指标。采用基于模糊逻辑的专家系统,即自适应神经模糊推理系统方法(ANFIS)计算城市交通指数。它的工作原理是应用神经网络特征的结论方法,目的是确定间接结论系统(模糊推理系统- FIS)的参数。系统的原型是通过使用适当的应用程序环境来开发的,并在其中实现了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANFIS Based Expert Systems Prototype Development for Estimation of Urban Mobility
For the purpose of estimating urban mobility, an approach that uses urban mobility indicators calculated from the data subsystem from the Charging Data Records database in the public mobile telecommunications network was chosen. Calculated indicators are unified in the urban mobility index as a unique indicator of urban mobility in urban agglomeration. The urban mobility index is calculated using an expert system based on fuzzy logic, that is, the adaptive neuro-fuzzy inference system method (ANFIS). It functions on the principle of applying conclusion methods which characterize neural networks with the goal of determining parameters of an indirect conclusion system (Fuzzy Inference System - FIS). The prototype of the system was developed by using the appropriate application environment, where the proposed methodology was implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信