基于视图的对象匹配

A. Shokoufandeh, I. Marsic, Sven J. Dickinson
{"title":"基于视图的对象匹配","authors":"A. Shokoufandeh, I. Marsic, Sven J. Dickinson","doi":"10.1109/ICCV.1998.710777","DOIUrl":null,"url":null,"abstract":"We introduce a novel view-based object representation, called the saliency map graph (SMG), which captures the salient regions of an object view at multiple scales using a wavelet transform. This compact representation is highly invariant to translation, rotation (image and depth), and scaling, and offers the locality of representation required for occluded object recognition. To compare two saliency map graphs, we introduce two graph similarity algorithms. The first computes the topological similarity between two SMG's, providing a coarse-level matching of two graphs. The second computes the geometrical similarity between two SMG's, providing a fine-level matching of two graphs. We test and compare these two algorithms on a large database of model object views.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"View-based object matching\",\"authors\":\"A. Shokoufandeh, I. Marsic, Sven J. Dickinson\",\"doi\":\"10.1109/ICCV.1998.710777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel view-based object representation, called the saliency map graph (SMG), which captures the salient regions of an object view at multiple scales using a wavelet transform. This compact representation is highly invariant to translation, rotation (image and depth), and scaling, and offers the locality of representation required for occluded object recognition. To compare two saliency map graphs, we introduce two graph similarity algorithms. The first computes the topological similarity between two SMG's, providing a coarse-level matching of two graphs. The second computes the geometrical similarity between two SMG's, providing a fine-level matching of two graphs. We test and compare these two algorithms on a large database of model object views.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们引入了一种新的基于视图的对象表示,称为显著性映射图(SMG),它使用小波变换在多个尺度上捕获对象视图的显著区域。这种紧凑的表示对平移、旋转(图像和深度)和缩放具有高度的不变性,并提供了遮挡物体识别所需的表示的局域性。为了比较两种显著性图,我们引入了两种图相似算法。第一个计算两个SMG之间的拓扑相似性,提供两个图的粗略匹配。第二个计算两个SMG之间的几何相似性,提供两个图的精细匹配。我们在一个大型模型对象视图数据库上对这两种算法进行了测试和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
View-based object matching
We introduce a novel view-based object representation, called the saliency map graph (SMG), which captures the salient regions of an object view at multiple scales using a wavelet transform. This compact representation is highly invariant to translation, rotation (image and depth), and scaling, and offers the locality of representation required for occluded object recognition. To compare two saliency map graphs, we introduce two graph similarity algorithms. The first computes the topological similarity between two SMG's, providing a coarse-level matching of two graphs. The second computes the geometrical similarity between two SMG's, providing a fine-level matching of two graphs. We test and compare these two algorithms on a large database of model object views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信