视频中实时目标检测的判别关注焦点

M. Saptharishi, A. Lipchin, D. Lisin
{"title":"视频中实时目标检测的判别关注焦点","authors":"M. Saptharishi, A. Lipchin, D. Lisin","doi":"10.1109/SiPS.2012.35","DOIUrl":null,"url":null,"abstract":"We propose a novel object detection approach that combines the discriminative power of object category classifiers with a simple pixel level focus of attention mechanism. The pixel-level foreground/background detectors evolve to classify each pixel as either being part of an object of interest or noise. Unlike background subtraction algorithms, the decision of what is foreground is influenced by object level knowledge rather than it being an outlier to a background distribution. The approach outperforms many background subtraction techniques in challenging scenarios. Combined with the proposed focus of attention mechanism, a robust object classifier(capable of classifying known objects or rejecting noise) runs in real-time while processing 1920x1080 videos on an off-the-shelf DSP.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discriminative Focus of Attention for Real-Time Object Detection in Video\",\"authors\":\"M. Saptharishi, A. Lipchin, D. Lisin\",\"doi\":\"10.1109/SiPS.2012.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel object detection approach that combines the discriminative power of object category classifiers with a simple pixel level focus of attention mechanism. The pixel-level foreground/background detectors evolve to classify each pixel as either being part of an object of interest or noise. Unlike background subtraction algorithms, the decision of what is foreground is influenced by object level knowledge rather than it being an outlier to a background distribution. The approach outperforms many background subtraction techniques in challenging scenarios. Combined with the proposed focus of attention mechanism, a robust object classifier(capable of classifying known objects or rejecting noise) runs in real-time while processing 1920x1080 videos on an off-the-shelf DSP.\",\"PeriodicalId\":286060,\"journal\":{\"name\":\"2012 IEEE Workshop on Signal Processing Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Workshop on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2012.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的目标检测方法,该方法将目标分类器的判别能力与简单的像素级注意焦点机制相结合。像素级前景/背景检测器进化为将每个像素分类为感兴趣对象或噪声的一部分。与背景减法算法不同,前景的决定受对象级知识的影响,而不是背景分布的离群值。在具有挑战性的场景中,该方法优于许多背景减法技术。结合所提出的注意力焦点机制,在现成的DSP上处理1920x1080视频时,一个鲁棒的对象分类器(能够对已知对象进行分类或拒绝噪声)可以实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Focus of Attention for Real-Time Object Detection in Video
We propose a novel object detection approach that combines the discriminative power of object category classifiers with a simple pixel level focus of attention mechanism. The pixel-level foreground/background detectors evolve to classify each pixel as either being part of an object of interest or noise. Unlike background subtraction algorithms, the decision of what is foreground is influenced by object level knowledge rather than it being an outlier to a background distribution. The approach outperforms many background subtraction techniques in challenging scenarios. Combined with the proposed focus of attention mechanism, a robust object classifier(capable of classifying known objects or rejecting noise) runs in real-time while processing 1920x1080 videos on an off-the-shelf DSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信