电磁场数值模拟中磁滞管理的优化

P. Fagan, B. Ducharne, A. Skarlatos
{"title":"电磁场数值模拟中磁滞管理的优化","authors":"P. Fagan, B. Ducharne, A. Skarlatos","doi":"10.1109/INTERMAG42984.2021.9580043","DOIUrl":null,"url":null,"abstract":"The treatment of hysteresis in numerical simulations represents major issues as large computational times and significant memory space allocations are required. The memory management of the Jiles-Atherton model is simple, but its integration requires relatively fine temporal discretization to achieve convergence. Oppositely, the Preisach model gives satisfactory results with a coarser temporal grid but requires vast memory space and complex management. The Derivative Static Hysteresis Model (DSHM) is an alternative solution for improved performances. The hysteresis law is considered in a generalized input vector space. An interpolation matrix is constructed with the columns and rows denoting the discrete values of H and $B$ and whose terms stand for the dB/dH slope at the corresponding point. Up to now, the filling step of the DSHM matrix has always been through experimental first-order reversal curves, but getting such experimental data is always complex. In this study, we propose to fill the DSHM matrix alternatively. We use simulated first-order reversal curves obtained from the Jiles-Atherton or the Preisach model, which have been identified using limited experimental data (the first magnetization curve and the major hysteresis cycle).","PeriodicalId":129905,"journal":{"name":"2021 IEEE International Magnetic Conference (INTERMAG)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized magnetic hysteresis management in numerical electromagnetic field simulations\",\"authors\":\"P. Fagan, B. Ducharne, A. Skarlatos\",\"doi\":\"10.1109/INTERMAG42984.2021.9580043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treatment of hysteresis in numerical simulations represents major issues as large computational times and significant memory space allocations are required. The memory management of the Jiles-Atherton model is simple, but its integration requires relatively fine temporal discretization to achieve convergence. Oppositely, the Preisach model gives satisfactory results with a coarser temporal grid but requires vast memory space and complex management. The Derivative Static Hysteresis Model (DSHM) is an alternative solution for improved performances. The hysteresis law is considered in a generalized input vector space. An interpolation matrix is constructed with the columns and rows denoting the discrete values of H and $B$ and whose terms stand for the dB/dH slope at the corresponding point. Up to now, the filling step of the DSHM matrix has always been through experimental first-order reversal curves, but getting such experimental data is always complex. In this study, we propose to fill the DSHM matrix alternatively. We use simulated first-order reversal curves obtained from the Jiles-Atherton or the Preisach model, which have been identified using limited experimental data (the first magnetization curve and the major hysteresis cycle).\",\"PeriodicalId\":129905,\"journal\":{\"name\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERMAG42984.2021.9580043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERMAG42984.2021.9580043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数值模拟中,迟滞的处理是一个主要问题,因为需要大量的计算时间和大量的内存空间分配。Jiles-Atherton模型的内存管理简单,但其集成需要相对精细的时间离散化才能实现收敛。相反,Preisach模型在较粗的时间网格上得到了令人满意的结果,但需要巨大的存储空间和复杂的管理。导数静态滞后模型(DSHM)是一种改进性能的替代方案。在广义输入向量空间中考虑了滞后律。构造插值矩阵,其中列和行表示H和$B$的离散值,其项表示对应点的dB/dH斜率。到目前为止,DSHM矩阵的填充步骤一直是通过实验一阶反转曲线,但获得这样的实验数据总是很复杂。在本研究中,我们建议交替填充DSHM矩阵。我们使用从Jiles-Atherton或Preisach模型获得的模拟一阶反转曲线,这些曲线已经通过有限的实验数据(第一磁化曲线和主磁滞周期)确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized magnetic hysteresis management in numerical electromagnetic field simulations
The treatment of hysteresis in numerical simulations represents major issues as large computational times and significant memory space allocations are required. The memory management of the Jiles-Atherton model is simple, but its integration requires relatively fine temporal discretization to achieve convergence. Oppositely, the Preisach model gives satisfactory results with a coarser temporal grid but requires vast memory space and complex management. The Derivative Static Hysteresis Model (DSHM) is an alternative solution for improved performances. The hysteresis law is considered in a generalized input vector space. An interpolation matrix is constructed with the columns and rows denoting the discrete values of H and $B$ and whose terms stand for the dB/dH slope at the corresponding point. Up to now, the filling step of the DSHM matrix has always been through experimental first-order reversal curves, but getting such experimental data is always complex. In this study, we propose to fill the DSHM matrix alternatively. We use simulated first-order reversal curves obtained from the Jiles-Atherton or the Preisach model, which have been identified using limited experimental data (the first magnetization curve and the major hysteresis cycle).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信