Raphaël Weber, Vincent Barrielle, Catherine Soladié, R. Séguier
{"title":"基于高级几何的情感预测视频模态特征","authors":"Raphaël Weber, Vincent Barrielle, Catherine Soladié, R. Séguier","doi":"10.1145/2988257.2988262","DOIUrl":null,"url":null,"abstract":"The automatic analysis of emotion remains a challenging task in unconstrained experimental conditions. In this paper, we present our contribution to the 6th Audio/Visual Emotion Challenge (AVEC 2016), which aims at predicting the continuous emotional dimensions of arousal and valence. First, we propose to improve the performance of the multimodal prediction with low-level features by adding high-level geometry-based features, namely head pose and expression signature. The head pose is estimated by fitting a reference 3D mesh to the 2D facial landmarks. The expression signature is the projection of the facial landmarks in an unsupervised person-specific model. Second, we propose to fuse the unimodal predictions trained on each training subject before performing the multimodal fusion. The results show that our high-level features improve the performance of the multimodal prediction of arousal and that the subjects fusion works well in unimodal prediction but generalizes poorly in multimodal prediction, particularly on valence.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"High-Level Geometry-based Features of Video Modality for Emotion Prediction\",\"authors\":\"Raphaël Weber, Vincent Barrielle, Catherine Soladié, R. Séguier\",\"doi\":\"10.1145/2988257.2988262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic analysis of emotion remains a challenging task in unconstrained experimental conditions. In this paper, we present our contribution to the 6th Audio/Visual Emotion Challenge (AVEC 2016), which aims at predicting the continuous emotional dimensions of arousal and valence. First, we propose to improve the performance of the multimodal prediction with low-level features by adding high-level geometry-based features, namely head pose and expression signature. The head pose is estimated by fitting a reference 3D mesh to the 2D facial landmarks. The expression signature is the projection of the facial landmarks in an unsupervised person-specific model. Second, we propose to fuse the unimodal predictions trained on each training subject before performing the multimodal fusion. The results show that our high-level features improve the performance of the multimodal prediction of arousal and that the subjects fusion works well in unimodal prediction but generalizes poorly in multimodal prediction, particularly on valence.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Level Geometry-based Features of Video Modality for Emotion Prediction
The automatic analysis of emotion remains a challenging task in unconstrained experimental conditions. In this paper, we present our contribution to the 6th Audio/Visual Emotion Challenge (AVEC 2016), which aims at predicting the continuous emotional dimensions of arousal and valence. First, we propose to improve the performance of the multimodal prediction with low-level features by adding high-level geometry-based features, namely head pose and expression signature. The head pose is estimated by fitting a reference 3D mesh to the 2D facial landmarks. The expression signature is the projection of the facial landmarks in an unsupervised person-specific model. Second, we propose to fuse the unimodal predictions trained on each training subject before performing the multimodal fusion. The results show that our high-level features improve the performance of the multimodal prediction of arousal and that the subjects fusion works well in unimodal prediction but generalizes poorly in multimodal prediction, particularly on valence.