利用联合矩阵分解对相关源进行知情分离

A. Boudjellal, K. Abed-Meraim, A. Belouchrani, P. Ravier
{"title":"利用联合矩阵分解对相关源进行知情分离","authors":"A. Boudjellal, K. Abed-Meraim, A. Belouchrani, P. Ravier","doi":"10.5281/ZENODO.44112","DOIUrl":null,"url":null,"abstract":"This paper deals with the separation problem of dependent sources. The separation is made possible thanks to side information on the dependence nature of the considered sources. In this work, we first show how this side information can be used to achieve desired source separation using joint matrix decomposition techniques. Indeed, in the case of statistically independent sources, many BSS methods are based on joint matrix diagonalization. In our case, we replace the target diagonal structure by appropriate non diagonal one which reflects the dependence nature of the sources. This new concept is illustrated with two simple 2×2 source separation exampleswhere second-order-statistics and high-order-statistics are used respectively.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Informed separation of dependent sources using joint matrix decomposition\",\"authors\":\"A. Boudjellal, K. Abed-Meraim, A. Belouchrani, P. Ravier\",\"doi\":\"10.5281/ZENODO.44112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the separation problem of dependent sources. The separation is made possible thanks to side information on the dependence nature of the considered sources. In this work, we first show how this side information can be used to achieve desired source separation using joint matrix decomposition techniques. Indeed, in the case of statistically independent sources, many BSS methods are based on joint matrix diagonalization. In our case, we replace the target diagonal structure by appropriate non diagonal one which reflects the dependence nature of the sources. This new concept is illustrated with two simple 2×2 source separation exampleswhere second-order-statistics and high-order-statistics are used respectively.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了依赖源的分离问题。这种分离是可能的,这要归功于关于所考虑的来源的依赖性质的侧面信息。在这项工作中,我们首先展示了如何使用联合矩阵分解技术来使用这些侧信息来实现所需的源分离。事实上,在统计独立来源的情况下,许多BSS方法是基于联合矩阵对角化。在本例中,我们将目标对角结构替换为适当的非对角结构,以反映源的依赖性。这个新概念通过两个简单的2×2源分离示例来说明,其中分别使用二阶统计量和高阶统计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informed separation of dependent sources using joint matrix decomposition
This paper deals with the separation problem of dependent sources. The separation is made possible thanks to side information on the dependence nature of the considered sources. In this work, we first show how this side information can be used to achieve desired source separation using joint matrix decomposition techniques. Indeed, in the case of statistically independent sources, many BSS methods are based on joint matrix diagonalization. In our case, we replace the target diagonal structure by appropriate non diagonal one which reflects the dependence nature of the sources. This new concept is illustrated with two simple 2×2 source separation exampleswhere second-order-statistics and high-order-statistics are used respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信