基于振幅和扫描方向的非线性超声共振光谱疲劳裂纹检测

Yanfeng Shen, Nipon Roy, Junzhen Wang, Zixuan Liu, Danyu Rao, Wu Xu
{"title":"基于振幅和扫描方向的非线性超声共振光谱疲劳裂纹检测","authors":"Yanfeng Shen, Nipon Roy, Junzhen Wang, Zixuan Liu, Danyu Rao, Wu Xu","doi":"10.1115/IMECE2018-86221","DOIUrl":null,"url":null,"abstract":"This paper investigates the amplitude and sweeping direction dependent behavior of nonlinear ultrasonic resonance spectroscopy for fatigue crack detection. The Contact Acoustic Nonlinearity (CAN) and the nonlinear resonance phenomena are illuminated via a reduced-order bilinear oscillator model. Unlike conventional linear ultrasonic spectroscopy, which would not change its pattern under different amplitudes of excitation or the frequency sweeping direction, the nonlinear resonance spectroscopy, on the other hand, may be noticeably influenced by both the wave amplitude and the loading history. Both up-tuning and down-tuning sweeping active sensing tests with various levels of excitation amplitudes are performed on a fatigued specimen. Short time Fourier transform is adopted to obtain the time-frequency features of the sensing signal. Corresponding to each excitation frequency, a nonlinear resonance index can be established based on the amplitude ratio between the superhamronic, the subharmonic, the mixed-frequency response components and the fundament frequency. The measured nonlinear resonance spectroscopy for a certain amplitude and frequency sweeping direction can be readily used to establish an instantaneous baseline. The spectroscopy of a different amplitude or frequency sweeping direction can be compared with such an instantaneous baseline and a Damage Index (DI) is obtained by measuring the deviation between the two spectra. Experimental investigations using an aluminum plate with rivet hole nucleated fatigue cracks are performed. A series of nonlinear spectroscopies are analyzed for both the pristine case and the damaged case. The spectral features for both cases are obtained to demonstrate the proposed fatigue crack detection methodology which may find its application for structural health monitoring (SHM). The paper finishes with summary, concluding remarks, and suggestions for future work.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Amplitude and Sweeping Direction Dependent Nonlinear Ultrasonic Resonance Spectroscopy for Fatigue Crack Detection\",\"authors\":\"Yanfeng Shen, Nipon Roy, Junzhen Wang, Zixuan Liu, Danyu Rao, Wu Xu\",\"doi\":\"10.1115/IMECE2018-86221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the amplitude and sweeping direction dependent behavior of nonlinear ultrasonic resonance spectroscopy for fatigue crack detection. The Contact Acoustic Nonlinearity (CAN) and the nonlinear resonance phenomena are illuminated via a reduced-order bilinear oscillator model. Unlike conventional linear ultrasonic spectroscopy, which would not change its pattern under different amplitudes of excitation or the frequency sweeping direction, the nonlinear resonance spectroscopy, on the other hand, may be noticeably influenced by both the wave amplitude and the loading history. Both up-tuning and down-tuning sweeping active sensing tests with various levels of excitation amplitudes are performed on a fatigued specimen. Short time Fourier transform is adopted to obtain the time-frequency features of the sensing signal. Corresponding to each excitation frequency, a nonlinear resonance index can be established based on the amplitude ratio between the superhamronic, the subharmonic, the mixed-frequency response components and the fundament frequency. The measured nonlinear resonance spectroscopy for a certain amplitude and frequency sweeping direction can be readily used to establish an instantaneous baseline. The spectroscopy of a different amplitude or frequency sweeping direction can be compared with such an instantaneous baseline and a Damage Index (DI) is obtained by measuring the deviation between the two spectra. Experimental investigations using an aluminum plate with rivet hole nucleated fatigue cracks are performed. A series of nonlinear spectroscopies are analyzed for both the pristine case and the damaged case. The spectral features for both cases are obtained to demonstrate the proposed fatigue crack detection methodology which may find its application for structural health monitoring (SHM). The paper finishes with summary, concluding remarks, and suggestions for future work.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了非线性超声共振光谱疲劳裂纹检测的振幅和扫向依赖性。利用降阶双线性振子模型分析了接触声非线性和非线性共振现象。传统的线性超声波谱在不同的激励幅度或扫频方向下不会改变其模式,而非线性共振波谱则可能受到波幅和加载历史的明显影响。在一个疲劳试样上进行了具有不同激励幅度水平的上调谐和下调谐扫频主动传感试验。采用短时傅里叶变换获得传感信号的时频特征。根据各激励频率对应的超谐波、次谐波、混频响应分量与基频的幅值之比,建立非线性共振指数。测量的某幅值和频率扫向的非线性共振谱可以很容易地用于建立瞬时基线。不同振幅或频率扫向的光谱可以与瞬时基线进行比较,并通过测量两种光谱之间的偏差得到损伤指数(DI)。对带有铆钉孔形疲劳裂纹的铝板进行了试验研究。分析了原始情况和损坏情况下的一系列非线性光谱。得到了两种情况下的频谱特征,以证明所提出的疲劳裂纹检测方法可以在结构健康监测(SHM)中得到应用。论文最后进行了总结、结束语和对今后工作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amplitude and Sweeping Direction Dependent Nonlinear Ultrasonic Resonance Spectroscopy for Fatigue Crack Detection
This paper investigates the amplitude and sweeping direction dependent behavior of nonlinear ultrasonic resonance spectroscopy for fatigue crack detection. The Contact Acoustic Nonlinearity (CAN) and the nonlinear resonance phenomena are illuminated via a reduced-order bilinear oscillator model. Unlike conventional linear ultrasonic spectroscopy, which would not change its pattern under different amplitudes of excitation or the frequency sweeping direction, the nonlinear resonance spectroscopy, on the other hand, may be noticeably influenced by both the wave amplitude and the loading history. Both up-tuning and down-tuning sweeping active sensing tests with various levels of excitation amplitudes are performed on a fatigued specimen. Short time Fourier transform is adopted to obtain the time-frequency features of the sensing signal. Corresponding to each excitation frequency, a nonlinear resonance index can be established based on the amplitude ratio between the superhamronic, the subharmonic, the mixed-frequency response components and the fundament frequency. The measured nonlinear resonance spectroscopy for a certain amplitude and frequency sweeping direction can be readily used to establish an instantaneous baseline. The spectroscopy of a different amplitude or frequency sweeping direction can be compared with such an instantaneous baseline and a Damage Index (DI) is obtained by measuring the deviation between the two spectra. Experimental investigations using an aluminum plate with rivet hole nucleated fatigue cracks are performed. A series of nonlinear spectroscopies are analyzed for both the pristine case and the damaged case. The spectral features for both cases are obtained to demonstrate the proposed fatigue crack detection methodology which may find its application for structural health monitoring (SHM). The paper finishes with summary, concluding remarks, and suggestions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信