利用人工智能模型预测太阳辐照度

P. K. Ray, Anindya Bharatee, P. S. Puhan, Sourav Sahoo
{"title":"利用人工智能模型预测太阳辐照度","authors":"P. K. Ray, Anindya Bharatee, P. S. Puhan, Sourav Sahoo","doi":"10.1109/ICICCSP53532.2022.9862494","DOIUrl":null,"url":null,"abstract":"The paper presents the solar energy prediction using ANN in order to effectively predict solar irradiance. With increasing interest in the scope for renewable energy, many countries are adopting new technologies of solar photovoltaic which has higher solar resource potential. If in advance of 24 hours, solar irradiance can be predicted, then it would help us immensely to optimize the energy production efficiency. Traditional methods which were used involved empirical, analytical, and physics-based models, statistical forecasting of solar data, and numerical methods to effectively predict the amount of solar irradiation. With the increasing use of Machine Learning better predictive models are being developed which help us to forecast better thereby reducing the error and increasing the efficiency.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Irradiance Forecasting Using an Artificial Intelligence Model\",\"authors\":\"P. K. Ray, Anindya Bharatee, P. S. Puhan, Sourav Sahoo\",\"doi\":\"10.1109/ICICCSP53532.2022.9862494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the solar energy prediction using ANN in order to effectively predict solar irradiance. With increasing interest in the scope for renewable energy, many countries are adopting new technologies of solar photovoltaic which has higher solar resource potential. If in advance of 24 hours, solar irradiance can be predicted, then it would help us immensely to optimize the energy production efficiency. Traditional methods which were used involved empirical, analytical, and physics-based models, statistical forecasting of solar data, and numerical methods to effectively predict the amount of solar irradiation. With the increasing use of Machine Learning better predictive models are being developed which help us to forecast better thereby reducing the error and increasing the efficiency.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地预测太阳辐照度,提出了利用人工神经网络进行太阳能预测的方法。随着人们对可再生能源领域的兴趣日益浓厚,许多国家正在采用具有更高太阳能资源潜力的太阳能光伏新技术。如果能提前24小时预测太阳辐照度,将极大地帮助我们优化能源生产效率。传统的方法包括经验、分析和基于物理的模型、太阳数据的统计预测和数值方法,以有效地预测太阳辐照量。随着机器学习的使用越来越多,更好的预测模型被开发出来,帮助我们更好地预测,从而减少误差,提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar Irradiance Forecasting Using an Artificial Intelligence Model
The paper presents the solar energy prediction using ANN in order to effectively predict solar irradiance. With increasing interest in the scope for renewable energy, many countries are adopting new technologies of solar photovoltaic which has higher solar resource potential. If in advance of 24 hours, solar irradiance can be predicted, then it would help us immensely to optimize the energy production efficiency. Traditional methods which were used involved empirical, analytical, and physics-based models, statistical forecasting of solar data, and numerical methods to effectively predict the amount of solar irradiation. With the increasing use of Machine Learning better predictive models are being developed which help us to forecast better thereby reducing the error and increasing the efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信