去除肌电包络中的伪影以改善肌电机械臂控制

Sandra Márquez-Figueroa, Y. Shmaliy, O. Ibarra-Manzano
{"title":"去除肌电包络中的伪影以改善肌电机械臂控制","authors":"Sandra Márquez-Figueroa, Y. Shmaliy, O. Ibarra-Manzano","doi":"10.37394/232014.2020.16.4","DOIUrl":null,"url":null,"abstract":"There are analysis methods of biomedical signalfeatures at present to know any information regarding the humanbody. It is to use the extracted features from the EMG signalto predict human motion and its associated efforts by usingsignals given by the motor unit action. Steps to process theEMG signal are envelope acquiring, artifacts filtering, estimationsmoothing, EMG value standardizing, feature classifying, andmotion recognizing. Different methods are useful to achieve thisgoal and apply by experimental projects. Using a database ofEMG signals, we calculate the envelope by using the rectifiedsignal, where we take the absolute number of EMG signals so thatall values become positive. In the first step, we shall now proceedto remove EMG envelope artifacts by using filters such as theKalman filter (KF), H1 filter, unbiased finite impulse response (UFIR), cKF, cH1, and cUFIR. The last three algorithms wereamended by assuming colored measurement noise. Last, we makea standardization of the EMG envelope. Given the above, we willknow if the estimation envelope gives the optimal features for anaccurate prediction.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removing Artifacts from EMG Envelope for Improving Myoelectric Robot Arm Control\",\"authors\":\"Sandra Márquez-Figueroa, Y. Shmaliy, O. Ibarra-Manzano\",\"doi\":\"10.37394/232014.2020.16.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are analysis methods of biomedical signalfeatures at present to know any information regarding the humanbody. It is to use the extracted features from the EMG signalto predict human motion and its associated efforts by usingsignals given by the motor unit action. Steps to process theEMG signal are envelope acquiring, artifacts filtering, estimationsmoothing, EMG value standardizing, feature classifying, andmotion recognizing. Different methods are useful to achieve thisgoal and apply by experimental projects. Using a database ofEMG signals, we calculate the envelope by using the rectifiedsignal, where we take the absolute number of EMG signals so thatall values become positive. In the first step, we shall now proceedto remove EMG envelope artifacts by using filters such as theKalman filter (KF), H1 filter, unbiased finite impulse response (UFIR), cKF, cH1, and cUFIR. The last three algorithms wereamended by assuming colored measurement noise. Last, we makea standardization of the EMG envelope. Given the above, we willknow if the estimation envelope gives the optimal features for anaccurate prediction.\",\"PeriodicalId\":305800,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2020.16.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2020.16.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前有生物医学信号特征的分析方法来了解人体的任何信息。它是利用从肌电图信号中提取的特征,通过运动单元动作给出的信号来预测人体运动及其相关的努力。处理肌电信号的步骤包括包络获取、伪影滤波、估计平滑、肌电信号值标准化、特征分类和运动识别。不同的方法对实现这一目标是有用的,并通过实验项目加以应用。使用一个肌电信号数据库,我们通过使用整流信号来计算包络线,其中我们取肌电信号的绝对数量,使所有值都变为正数。在第一步中,我们现在将通过使用卡尔曼滤波器(KF)、H1滤波器、无偏有限脉冲响应(UFIR)、cKF、cH1和cUFIR等滤波器来去除肌电包络伪影。通过假设有色测量噪声,对前三种算法进行了修正。最后,我们对肌电包络进行了标准化。考虑到上述情况,我们将知道估计包络是否为不准确的预测提供了最优特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removing Artifacts from EMG Envelope for Improving Myoelectric Robot Arm Control
There are analysis methods of biomedical signalfeatures at present to know any information regarding the humanbody. It is to use the extracted features from the EMG signalto predict human motion and its associated efforts by usingsignals given by the motor unit action. Steps to process theEMG signal are envelope acquiring, artifacts filtering, estimationsmoothing, EMG value standardizing, feature classifying, andmotion recognizing. Different methods are useful to achieve thisgoal and apply by experimental projects. Using a database ofEMG signals, we calculate the envelope by using the rectifiedsignal, where we take the absolute number of EMG signals so thatall values become positive. In the first step, we shall now proceedto remove EMG envelope artifacts by using filters such as theKalman filter (KF), H1 filter, unbiased finite impulse response (UFIR), cKF, cH1, and cUFIR. The last three algorithms wereamended by assuming colored measurement noise. Last, we makea standardization of the EMG envelope. Given the above, we willknow if the estimation envelope gives the optimal features for anaccurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信