单机总加权延迟调度问题的协同求解器

Lamiche Chaabane
{"title":"单机总加权延迟调度问题的协同求解器","authors":"Lamiche Chaabane","doi":"10.1109/EDIS.2017.8284043","DOIUrl":null,"url":null,"abstract":"In this research work, we propose a simple hybrid model based on nature inspired techniques in order to find a better solution for the SMTWT problem which is classified in the literature as a strong NP-hard. The proposed model takes advantages of the genetic algorithm (GA) as a global search strategy and the potent of the modified simulated annealing (MSA) technique to improve solution quality in mutation step. Numerical results on a set of benchmarks showed the efficiency of the developed model to find better results compared with some other literature works.","PeriodicalId":294761,"journal":{"name":"2018 International Symposium on Programming and Systems (ISPS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cooperative solver for single machine total weighted tardiness scheduling problem\",\"authors\":\"Lamiche Chaabane\",\"doi\":\"10.1109/EDIS.2017.8284043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, we propose a simple hybrid model based on nature inspired techniques in order to find a better solution for the SMTWT problem which is classified in the literature as a strong NP-hard. The proposed model takes advantages of the genetic algorithm (GA) as a global search strategy and the potent of the modified simulated annealing (MSA) technique to improve solution quality in mutation step. Numerical results on a set of benchmarks showed the efficiency of the developed model to find better results compared with some other literature works.\",\"PeriodicalId\":294761,\"journal\":{\"name\":\"2018 International Symposium on Programming and Systems (ISPS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on Programming and Systems (ISPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDIS.2017.8284043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDIS.2017.8284043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究工作中,我们提出了一个基于自然启发技术的简单混合模型,以便为文献中分类为强NP-hard的SMTWT问题找到更好的解决方案。该模型利用遗传算法作为全局搜索策略,利用改进的模拟退火技术提高突变步解的质量。在一组基准上的数值结果表明,与其他文献相比,所建立的模型能够找到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cooperative solver for single machine total weighted tardiness scheduling problem
In this research work, we propose a simple hybrid model based on nature inspired techniques in order to find a better solution for the SMTWT problem which is classified in the literature as a strong NP-hard. The proposed model takes advantages of the genetic algorithm (GA) as a global search strategy and the potent of the modified simulated annealing (MSA) technique to improve solution quality in mutation step. Numerical results on a set of benchmarks showed the efficiency of the developed model to find better results compared with some other literature works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信