基于EM的独立三维运动估计实验

J. Kosecka
{"title":"基于EM的独立三维运动估计实验","authors":"J. Kosecka","doi":"10.1109/AIPR.2001.991217","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of multiple 3D rigid body motion estimation from the optical flow. We use the differential epipolar constraint to measure the consistency of the local flow estimates with 3D rigid body motion and employ a probabilistic interpretation of the overall flowfield in terms of mixture models. The estimation of 3D motion parameters as well as the refinement of the initial motion segmentation is carried out using an Expectation-Maximization (EM) algorithm. The algorithm is guaranteed to improve the overall likelihood of the data. The proposed technique is a step towards estimation of 3D motion of independently moving objects in the presence of egomotion.","PeriodicalId":277181,"journal":{"name":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments in estimation of independent 3D motion using EM\",\"authors\":\"J. Kosecka\",\"doi\":\"10.1109/AIPR.2001.991217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of multiple 3D rigid body motion estimation from the optical flow. We use the differential epipolar constraint to measure the consistency of the local flow estimates with 3D rigid body motion and employ a probabilistic interpretation of the overall flowfield in terms of mixture models. The estimation of 3D motion parameters as well as the refinement of the initial motion segmentation is carried out using an Expectation-Maximization (EM) algorithm. The algorithm is guaranteed to improve the overall likelihood of the data. The proposed technique is a step towards estimation of 3D motion of independently moving objects in the presence of egomotion.\",\"PeriodicalId\":277181,\"journal\":{\"name\":\"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2001.991217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2001.991217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于光流的三维多刚体运动估计问题。我们使用微分极面约束来测量局部流量估计与3D刚体运动的一致性,并采用混合模型对整体流场的概率解释。采用期望最大化(EM)算法对三维运动参数进行估计,并对初始运动分割进行细化。该算法保证提高数据的整体似然性。所提出的技术是在存在自我运动的情况下估计独立运动物体的三维运动的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments in estimation of independent 3D motion using EM
In this paper we address the problem of multiple 3D rigid body motion estimation from the optical flow. We use the differential epipolar constraint to measure the consistency of the local flow estimates with 3D rigid body motion and employ a probabilistic interpretation of the overall flowfield in terms of mixture models. The estimation of 3D motion parameters as well as the refinement of the initial motion segmentation is carried out using an Expectation-Maximization (EM) algorithm. The algorithm is guaranteed to improve the overall likelihood of the data. The proposed technique is a step towards estimation of 3D motion of independently moving objects in the presence of egomotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信