Fog-RAN中d2d辅助流水线内容传递的信息论分析

Roy Karasik, O. Simeone, S. Shamai
{"title":"Fog-RAN中d2d辅助流水线内容传递的信息论分析","authors":"Roy Karasik, O. Simeone, S. Shamai","doi":"10.1109/ISWCS.2018.8491204","DOIUrl":null,"url":null,"abstract":"In a Fog-Radio Access Network (F-RAN), edge caching and fronthaul connectivity to a cloud processor are utilized for the purpose of content delivery. Additional Device-to-Device (D2D) communication capabilities can support the operation of an F - RAN by alleviating fronthaul and cloud processing load, and reducing the delivery time. In this work, basic limits on the normalized delivery time (NDT) metric, which captures the high signal-to-noise ratio worst-case latency for delivering any requested content to the users, are derived. Assuming proactive offline caching, out-of-band D2D communication, and an F-RAN with two edge nodes and two users, an information-theoretically optimal caching and delivery strategy is presented. Unlike prior work, the NDT performance is studied under pipelined transmission, whereby the edge nodes transmit on the wireless channel while simultaneously receiving messages over the fronthaul links, and the users transmit messages over the D2D links while at the same time receiving on the wireless channel. Insights are provided on the regimes in which D2D communication is beneficial, and the maximum improvement to the latency is characterized.","PeriodicalId":272951,"journal":{"name":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Information- Theoretic Analysis of D2D-Aided Pipelined Content Delivery in Fog-RAN\",\"authors\":\"Roy Karasik, O. Simeone, S. Shamai\",\"doi\":\"10.1109/ISWCS.2018.8491204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a Fog-Radio Access Network (F-RAN), edge caching and fronthaul connectivity to a cloud processor are utilized for the purpose of content delivery. Additional Device-to-Device (D2D) communication capabilities can support the operation of an F - RAN by alleviating fronthaul and cloud processing load, and reducing the delivery time. In this work, basic limits on the normalized delivery time (NDT) metric, which captures the high signal-to-noise ratio worst-case latency for delivering any requested content to the users, are derived. Assuming proactive offline caching, out-of-band D2D communication, and an F-RAN with two edge nodes and two users, an information-theoretically optimal caching and delivery strategy is presented. Unlike prior work, the NDT performance is studied under pipelined transmission, whereby the edge nodes transmit on the wireless channel while simultaneously receiving messages over the fronthaul links, and the users transmit messages over the D2D links while at the same time receiving on the wireless channel. Insights are provided on the regimes in which D2D communication is beneficial, and the maximum improvement to the latency is characterized.\",\"PeriodicalId\":272951,\"journal\":{\"name\":\"2018 15th International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2018.8491204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2018.8491204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在雾式无线接入网(F-RAN)中,边缘缓存和到云处理器的前传连接被用于内容交付目的。额外的设备对设备(D2D)通信功能可以通过减轻前传和云处理负载以及缩短交付时间来支持F - RAN的运行。在这项工作中,导出了标准化交付时间(NDT)度量的基本限制,该度量捕获了向用户交付任何请求内容的高信噪比最坏情况延迟。假设主动离线缓存、带外D2D通信和具有两个边缘节点和两个用户的F-RAN,提出了一种信息理论最优的缓存和传输策略。与先前的工作不同,本文研究了管道传输下的NDT性能,即边缘节点在无线信道上发送消息同时在前传链路上接收消息,用户在D2D链路上发送消息同时在无线信道上接收消息。提供了对D2D通信有利的机制的见解,并描述了对延迟的最大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information- Theoretic Analysis of D2D-Aided Pipelined Content Delivery in Fog-RAN
In a Fog-Radio Access Network (F-RAN), edge caching and fronthaul connectivity to a cloud processor are utilized for the purpose of content delivery. Additional Device-to-Device (D2D) communication capabilities can support the operation of an F - RAN by alleviating fronthaul and cloud processing load, and reducing the delivery time. In this work, basic limits on the normalized delivery time (NDT) metric, which captures the high signal-to-noise ratio worst-case latency for delivering any requested content to the users, are derived. Assuming proactive offline caching, out-of-band D2D communication, and an F-RAN with two edge nodes and two users, an information-theoretically optimal caching and delivery strategy is presented. Unlike prior work, the NDT performance is studied under pipelined transmission, whereby the edge nodes transmit on the wireless channel while simultaneously receiving messages over the fronthaul links, and the users transmit messages over the D2D links while at the same time receiving on the wireless channel. Insights are provided on the regimes in which D2D communication is beneficial, and the maximum improvement to the latency is characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信