视频语义索引的最大后验自适应方法

B. A. Priyadharssini, S. Sivagami, K. Muneeswaran
{"title":"视频语义索引的最大后验自适应方法","authors":"B. A. Priyadharssini, S. Sivagami, K. Muneeswaran","doi":"10.1109/ICE-CCN.2013.6528613","DOIUrl":null,"url":null,"abstract":"To manage large amount of video data, an effective search mechanism is necessary. The keyword based search system is not efficient for video data due to the lack of metadata; hence for video indexing a method called Maximum-a-posteriori (MAP) method which uses Expectation Maximization algorithm to form a universal background model (UBM) by applying all training data. MAP adaptation uses a prior knowledge of UBM model parameters to estimate parameters of every training and test data. GMM Supervectors can be generated from the adaptive mean vectors. Support Vector Machine (SVM) along with GMM supervectors is used for the classification of video. Experimental evaluation of the proposed method is done in TRECVID 2010 video dataset and the result shows that it is better, since the method uses the fusion of visual and audio features.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum a posteriori adaptation method for video semantic indexing\",\"authors\":\"B. A. Priyadharssini, S. Sivagami, K. Muneeswaran\",\"doi\":\"10.1109/ICE-CCN.2013.6528613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To manage large amount of video data, an effective search mechanism is necessary. The keyword based search system is not efficient for video data due to the lack of metadata; hence for video indexing a method called Maximum-a-posteriori (MAP) method which uses Expectation Maximization algorithm to form a universal background model (UBM) by applying all training data. MAP adaptation uses a prior knowledge of UBM model parameters to estimate parameters of every training and test data. GMM Supervectors can be generated from the adaptive mean vectors. Support Vector Machine (SVM) along with GMM supervectors is used for the classification of video. Experimental evaluation of the proposed method is done in TRECVID 2010 video dataset and the result shows that it is better, since the method uses the fusion of visual and audio features.\",\"PeriodicalId\":286830,\"journal\":{\"name\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICE-CCN.2013.6528613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了管理海量的视频数据,需要一种有效的搜索机制。基于关键字的视频数据搜索系统由于缺乏元数据而效率不高;因此,对于视频索引,一种称为MAP (Maximum-a-posteriori)方法,该方法使用期望最大化算法通过应用所有训练数据形成通用背景模型(UBM)。MAP自适应使用先验知识的UBM模型参数来估计每个训练和测试数据的参数。GMM超向量可以由自适应均值向量生成。利用支持向量机(SVM)和GMM超向量对视频进行分类。在TRECVID 2010视频数据集上对该方法进行了实验评估,结果表明该方法利用了视觉和音频特征的融合,取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum a posteriori adaptation method for video semantic indexing
To manage large amount of video data, an effective search mechanism is necessary. The keyword based search system is not efficient for video data due to the lack of metadata; hence for video indexing a method called Maximum-a-posteriori (MAP) method which uses Expectation Maximization algorithm to form a universal background model (UBM) by applying all training data. MAP adaptation uses a prior knowledge of UBM model parameters to estimate parameters of every training and test data. GMM Supervectors can be generated from the adaptive mean vectors. Support Vector Machine (SVM) along with GMM supervectors is used for the classification of video. Experimental evaluation of the proposed method is done in TRECVID 2010 video dataset and the result shows that it is better, since the method uses the fusion of visual and audio features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信