{"title":"指数族主成分分析和低秩矩阵分解的高效全局优化","authors":"Yuhong Guo, Dale Schuurmans","doi":"10.1109/ALLERTON.2008.4797683","DOIUrl":null,"url":null,"abstract":"We present an efficient global optimization algorithm for exponential family principal component analysis (PCA) and associated low-rank matrix factorization problems. Exponential family PCA has been shown to improve the results of standard PCA on non-Gaussian data. Unfortunately, the widespread use of exponential family PCA has been hampered by the existence of only local optimization procedures. The prevailing assumption has been that the non-convexity of the problem prevents an efficient global optimization approach from being developed. Fortunately, this pessimism is unfounded. We present a reformulation of the underlying optimization problem that preserves the identity of the global solution while admitting an efficient optimization procedure. The algorithm we develop involves only a sub-gradient optimization of a convex objective plus associated eigenvector computations. (No general purpose semidefinite programming solver is required.) The low-rank constraint is exactly preserved, while the method can be kernelized through a consistent approximation to admit a fixed non-linearity. We demonstrate improved solution quality with the global solver, and also add to the evidence that exponential family PCA produces superior results to standard PCA on non-Gaussian data.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient global optimization for exponential family PCA and low-rank matrix factorization\",\"authors\":\"Yuhong Guo, Dale Schuurmans\",\"doi\":\"10.1109/ALLERTON.2008.4797683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient global optimization algorithm for exponential family principal component analysis (PCA) and associated low-rank matrix factorization problems. Exponential family PCA has been shown to improve the results of standard PCA on non-Gaussian data. Unfortunately, the widespread use of exponential family PCA has been hampered by the existence of only local optimization procedures. The prevailing assumption has been that the non-convexity of the problem prevents an efficient global optimization approach from being developed. Fortunately, this pessimism is unfounded. We present a reformulation of the underlying optimization problem that preserves the identity of the global solution while admitting an efficient optimization procedure. The algorithm we develop involves only a sub-gradient optimization of a convex objective plus associated eigenvector computations. (No general purpose semidefinite programming solver is required.) The low-rank constraint is exactly preserved, while the method can be kernelized through a consistent approximation to admit a fixed non-linearity. We demonstrate improved solution quality with the global solver, and also add to the evidence that exponential family PCA produces superior results to standard PCA on non-Gaussian data.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient global optimization for exponential family PCA and low-rank matrix factorization
We present an efficient global optimization algorithm for exponential family principal component analysis (PCA) and associated low-rank matrix factorization problems. Exponential family PCA has been shown to improve the results of standard PCA on non-Gaussian data. Unfortunately, the widespread use of exponential family PCA has been hampered by the existence of only local optimization procedures. The prevailing assumption has been that the non-convexity of the problem prevents an efficient global optimization approach from being developed. Fortunately, this pessimism is unfounded. We present a reformulation of the underlying optimization problem that preserves the identity of the global solution while admitting an efficient optimization procedure. The algorithm we develop involves only a sub-gradient optimization of a convex objective plus associated eigenvector computations. (No general purpose semidefinite programming solver is required.) The low-rank constraint is exactly preserved, while the method can be kernelized through a consistent approximation to admit a fixed non-linearity. We demonstrate improved solution quality with the global solver, and also add to the evidence that exponential family PCA produces superior results to standard PCA on non-Gaussian data.