Tom Heyman, Vincent Spruyt, Sebastian Gruenwedel, A. Ledda, W. Philips
{"title":"基于典型相关分析的概率视觉跟踪运动模型","authors":"Tom Heyman, Vincent Spruyt, Sebastian Gruenwedel, A. Ledda, W. Philips","doi":"10.1109/VCIP.2012.6410804","DOIUrl":null,"url":null,"abstract":"Particle filters are often used for tracking objects within a scene. As the prediction model of a particle filter is often implemented using basic movement predictions such as random walk, constant velocity or acceleration, these models will usually be incorrect. Therefore, this paper proposes a new approach, based on a Canonical Correlation Analysis (CCA) tracking method which provides an object specific motion model. This model is used to construct a proposal distribution of the prediction model which predicts new states, increasing the robustness of the particle filter. Results confirm an increase in accuracy compared to state-of-the-art methods.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Canonical Correlation Analysis based motion model for probabilistic visual tracking\",\"authors\":\"Tom Heyman, Vincent Spruyt, Sebastian Gruenwedel, A. Ledda, W. Philips\",\"doi\":\"10.1109/VCIP.2012.6410804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filters are often used for tracking objects within a scene. As the prediction model of a particle filter is often implemented using basic movement predictions such as random walk, constant velocity or acceleration, these models will usually be incorrect. Therefore, this paper proposes a new approach, based on a Canonical Correlation Analysis (CCA) tracking method which provides an object specific motion model. This model is used to construct a proposal distribution of the prediction model which predicts new states, increasing the robustness of the particle filter. Results confirm an increase in accuracy compared to state-of-the-art methods.\",\"PeriodicalId\":103073,\"journal\":{\"name\":\"2012 Visual Communications and Image Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Visual Communications and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2012.6410804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Canonical Correlation Analysis based motion model for probabilistic visual tracking
Particle filters are often used for tracking objects within a scene. As the prediction model of a particle filter is often implemented using basic movement predictions such as random walk, constant velocity or acceleration, these models will usually be incorrect. Therefore, this paper proposes a new approach, based on a Canonical Correlation Analysis (CCA) tracking method which provides an object specific motion model. This model is used to construct a proposal distribution of the prediction model which predicts new states, increasing the robustness of the particle filter. Results confirm an increase in accuracy compared to state-of-the-art methods.