条件直觉模糊均值的鞅收敛定理

K. Čunderlíková
{"title":"条件直觉模糊均值的鞅收敛定理","authors":"K. Čunderlíková","doi":"10.7546/nifs.2021.27.2.94-102","DOIUrl":null,"url":null,"abstract":"The aim of this contribution is to show a representation of a conditional intuitionistic fuzzy mean value of intuitionistic fuzzy observables by a conditional mean value of random variables. We formulate a martingale convergence theorem for a conditional intuitionistic fuzzy mean value, too.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Martingale convergence theorem for a conditional intuitionistic fuzzy mean value\",\"authors\":\"K. Čunderlíková\",\"doi\":\"10.7546/nifs.2021.27.2.94-102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this contribution is to show a representation of a conditional intuitionistic fuzzy mean value of intuitionistic fuzzy observables by a conditional mean value of random variables. We formulate a martingale convergence theorem for a conditional intuitionistic fuzzy mean value, too.\",\"PeriodicalId\":433687,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nifs.2021.27.2.94-102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2021.27.2.94-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这一贡献的目的是用随机变量的条件均值来表示直觉模糊可观测值的条件直觉模糊均值。我们也给出了条件直觉模糊均值的鞅收敛定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Martingale convergence theorem for a conditional intuitionistic fuzzy mean value
The aim of this contribution is to show a representation of a conditional intuitionistic fuzzy mean value of intuitionistic fuzzy observables by a conditional mean value of random variables. We formulate a martingale convergence theorem for a conditional intuitionistic fuzzy mean value, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信