可压缩超音速流动激波/湍流边界层相互作用的数值模拟

Bahia Dris, Barkani Jamal
{"title":"可压缩超音速流动激波/湍流边界层相互作用的数值模拟","authors":"Bahia Dris, Barkani Jamal","doi":"10.1109/ISACS48493.2019.9068904","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the numerical study of two-dimensional systems of conservation laws describing unsteady flows, supersonic, compressible and turbulent. The structured grids finite volume method is adopted here as well as the algebraic model of Baldwin and Lomax is used for the modelling of eddy viscosity. This model of turbulence was examined on two applications: the isothermal flat plate and the compression corner of 10°.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modelling Of The Interaction Shock / Turbulent Boundary Layer For A Compressible Supersonic Flow\",\"authors\":\"Bahia Dris, Barkani Jamal\",\"doi\":\"10.1109/ISACS48493.2019.9068904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the numerical study of two-dimensional systems of conservation laws describing unsteady flows, supersonic, compressible and turbulent. The structured grids finite volume method is adopted here as well as the algebraic model of Baldwin and Lomax is used for the modelling of eddy viscosity. This model of turbulence was examined on two applications: the isothermal flat plate and the compression corner of 10°.\",\"PeriodicalId\":312521,\"journal\":{\"name\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACS48493.2019.9068904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对描述非定常流、超声速流、可压缩流和湍流流的二维守恒律系统进行了数值研究。本文采用结构网格有限体积法,采用Baldwin和Lomax的代数模型对涡流粘度进行建模。在等温平板和10°压缩角两种情况下对该湍流模型进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Modelling Of The Interaction Shock / Turbulent Boundary Layer For A Compressible Supersonic Flow
This paper is devoted to the numerical study of two-dimensional systems of conservation laws describing unsteady flows, supersonic, compressible and turbulent. The structured grids finite volume method is adopted here as well as the algebraic model of Baldwin and Lomax is used for the modelling of eddy viscosity. This model of turbulence was examined on two applications: the isothermal flat plate and the compression corner of 10°.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信