数据驱动机器学习在二元精馏塔故障检测与分类中的应用

S. -, M. Mythily, D. ., D. Manamalli
{"title":"数据驱动机器学习在二元精馏塔故障检测与分类中的应用","authors":"S. -, M. Mythily, D. ., D. Manamalli","doi":"10.54216/jcim.110105","DOIUrl":null,"url":null,"abstract":"Mathematical programming can express competency concepts in a well-defined mathematical model for a particular Any system that runs is always be expected to experience faults in different ways. Any change in the physical state of numerous components, control machinery, as well as environmental factors, might result in these problems. In process industries, where prompt detection is crucial in maintaining high product quality, dependability, and safety under various operating situations, finding these flaws is one of the most difficult tasks. The goal of this project is to implement several machine learning techniques for fault identification and classification in a binary distillation column. A pilot binary distillation unit (UOP3CC) is utilized for this purpose. The set up is run under normal operating conditions and the real time data is collected. Three common faults namely reboiler fault, feed pump fault and sensor fault are introduced one at a time and the faulty data is collected. These data are then introduced in to different machine learning algorithms like Logistic Regression, KNN, Naive Bayes, Decision Tree, Gradient Boosting, X Gradient Boosting, SVC and Light Gradient Boosting for model development. 70% of the data samples used for training and 30% of data samples are used for testing. It is found the Decision tree algorithm gives the best accuracy possible with 99.9%. Using decision tree algorithm, fault classification is performed for different datasets and is found that the algorithm was able to classify accurately even for new untrained datasets.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Driven Machine Learning For Fault Detection And Classification In Binary Distillation Column\",\"authors\":\"S. -, M. Mythily, D. ., D. Manamalli\",\"doi\":\"10.54216/jcim.110105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical programming can express competency concepts in a well-defined mathematical model for a particular Any system that runs is always be expected to experience faults in different ways. Any change in the physical state of numerous components, control machinery, as well as environmental factors, might result in these problems. In process industries, where prompt detection is crucial in maintaining high product quality, dependability, and safety under various operating situations, finding these flaws is one of the most difficult tasks. The goal of this project is to implement several machine learning techniques for fault identification and classification in a binary distillation column. A pilot binary distillation unit (UOP3CC) is utilized for this purpose. The set up is run under normal operating conditions and the real time data is collected. Three common faults namely reboiler fault, feed pump fault and sensor fault are introduced one at a time and the faulty data is collected. These data are then introduced in to different machine learning algorithms like Logistic Regression, KNN, Naive Bayes, Decision Tree, Gradient Boosting, X Gradient Boosting, SVC and Light Gradient Boosting for model development. 70% of the data samples used for training and 30% of data samples are used for testing. It is found the Decision tree algorithm gives the best accuracy possible with 99.9%. Using decision tree algorithm, fault classification is performed for different datasets and is found that the algorithm was able to classify accurately even for new untrained datasets.\",\"PeriodicalId\":169383,\"journal\":{\"name\":\"Journal of Cybersecurity and Information Management\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jcim.110105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.110105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数学规划可以在一个定义良好的数学模型中表达能力概念,用于特定的任何运行的系统总是被期望以不同的方式经历故障。许多部件、控制机械以及环境因素的物理状态的任何变化都可能导致这些问题。在过程工业中,及时检测对于在各种操作情况下保持高产品质量、可靠性和安全性至关重要,发现这些缺陷是最困难的任务之一。本项目的目标是实现几种机器学习技术,用于二元精馏塔的故障识别和分类。为此目的使用了一个中试二元蒸馏装置(UOP3CC)。该装置在正常运行条件下运行,并实时收集数据。分别介绍了再沸器故障、给水泵故障和传感器故障三种常见故障,并收集了故障数据。然后将这些数据引入到不同的机器学习算法中,如逻辑回归、KNN、朴素贝叶斯、决策树、梯度增强、X梯度增强、SVC和轻梯度增强,用于模型开发。70%的数据样本用于训练,30%的数据样本用于测试。结果表明,决策树算法的准确率达到了99.9%。利用决策树算法对不同的数据集进行故障分类,发现该算法即使对新的未经训练的数据集也能准确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Driven Machine Learning For Fault Detection And Classification In Binary Distillation Column
Mathematical programming can express competency concepts in a well-defined mathematical model for a particular Any system that runs is always be expected to experience faults in different ways. Any change in the physical state of numerous components, control machinery, as well as environmental factors, might result in these problems. In process industries, where prompt detection is crucial in maintaining high product quality, dependability, and safety under various operating situations, finding these flaws is one of the most difficult tasks. The goal of this project is to implement several machine learning techniques for fault identification and classification in a binary distillation column. A pilot binary distillation unit (UOP3CC) is utilized for this purpose. The set up is run under normal operating conditions and the real time data is collected. Three common faults namely reboiler fault, feed pump fault and sensor fault are introduced one at a time and the faulty data is collected. These data are then introduced in to different machine learning algorithms like Logistic Regression, KNN, Naive Bayes, Decision Tree, Gradient Boosting, X Gradient Boosting, SVC and Light Gradient Boosting for model development. 70% of the data samples used for training and 30% of data samples are used for testing. It is found the Decision tree algorithm gives the best accuracy possible with 99.9%. Using decision tree algorithm, fault classification is performed for different datasets and is found that the algorithm was able to classify accurately even for new untrained datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信