长β - eta范式解的高阶β匹配

Kristian Støvring
{"title":"长β - eta范式解的高阶β匹配","authors":"Kristian Støvring","doi":"10.7146/BRICS.V13I12.21917","DOIUrl":null,"url":null,"abstract":"Higher-order matching is a special case of unification of simply-typed lambda-terms: in a matching equation, one of the two sides contains no unification variables. Loader has recently shown that higher-order matching up to beta equivalence is undecidable, but decidability of higher-order matching up to beta-eta equivalence is a long-standing open problem.We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form.","PeriodicalId":114503,"journal":{"name":"Nord. J. Comput.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Higher-Order Beta Matching with Solutions in Long Beta-Eta Normal Form\",\"authors\":\"Kristian Støvring\",\"doi\":\"10.7146/BRICS.V13I12.21917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-order matching is a special case of unification of simply-typed lambda-terms: in a matching equation, one of the two sides contains no unification variables. Loader has recently shown that higher-order matching up to beta equivalence is undecidable, but decidability of higher-order matching up to beta-eta equivalence is a long-standing open problem.We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form.\",\"PeriodicalId\":114503,\"journal\":{\"name\":\"Nord. J. Comput.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nord. J. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/BRICS.V13I12.21917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nord. J. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/BRICS.V13I12.21917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

高阶匹配是简单类型λ项统一的一种特殊情况:在匹配方程中,两边中的一方不包含统一变量。Loader最近表明,高阶匹配与β等价是不可判定的,但高阶匹配与β等价的可判定性是一个长期存在的开放性问题。我们证明了当且仅当高阶匹配等价的限制形式是可决定的时,高阶匹配等价是可决定的,其限制条件是解必须是长正规形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-Order Beta Matching with Solutions in Long Beta-Eta Normal Form
Higher-order matching is a special case of unification of simply-typed lambda-terms: in a matching equation, one of the two sides contains no unification variables. Loader has recently shown that higher-order matching up to beta equivalence is undecidable, but decidability of higher-order matching up to beta-eta equivalence is a long-standing open problem.We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信