基于卷积层和深度卷积层的番茄叶片病害检测

Sagar Deep Deb, R. Kashyap, A. Abhishek, R. Lavanya, Pushp Paritosh, R. K. Jha
{"title":"基于卷积层和深度卷积层的番茄叶片病害检测","authors":"Sagar Deep Deb, R. Kashyap, A. Abhishek, R. Lavanya, Pushp Paritosh, R. K. Jha","doi":"10.1109/IConSCEPT57958.2023.10170396","DOIUrl":null,"url":null,"abstract":"Numerous studies have focused on enhancing the effectiveness of identifying leaf diseases through image classification. However, it is essential to develop a classification system with fewer parameters to enable it to operate efficiently on mobile devices. As a result, A lot of research works are going on to make the neural network computationally light so that we can utilise these networks on a mobile device as it cannot afford a GPU to run in background because of the space and memory limitations of a portable device. In this study, we propose a deep learningbased approach for tomato leaf disease detection using a series of convolutional and depthwise convolutional layers. The proposed model contains only 17,209 trainable parameters. The model was able to achieve high accuracy of 92.10 % on tomato crop from a publicly available PlantVillage dataset while utilizing a smaller number of parameters.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomato leaf disease detection using series of Convolutional and Depthwise Convolutional Layers\",\"authors\":\"Sagar Deep Deb, R. Kashyap, A. Abhishek, R. Lavanya, Pushp Paritosh, R. K. Jha\",\"doi\":\"10.1109/IConSCEPT57958.2023.10170396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies have focused on enhancing the effectiveness of identifying leaf diseases through image classification. However, it is essential to develop a classification system with fewer parameters to enable it to operate efficiently on mobile devices. As a result, A lot of research works are going on to make the neural network computationally light so that we can utilise these networks on a mobile device as it cannot afford a GPU to run in background because of the space and memory limitations of a portable device. In this study, we propose a deep learningbased approach for tomato leaf disease detection using a series of convolutional and depthwise convolutional layers. The proposed model contains only 17,209 trainable parameters. The model was able to achieve high accuracy of 92.10 % on tomato crop from a publicly available PlantVillage dataset while utilizing a smaller number of parameters.\",\"PeriodicalId\":240167,\"journal\":{\"name\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConSCEPT57958.2023.10170396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究都集中在通过图像分类来提高识别叶片病害的有效性。然而,必须开发一个参数较少的分类系统,使其能够在移动设备上有效地运行。因此,大量的研究工作正在进行,以使神经网络计算轻,这样我们就可以在移动设备上利用这些网络,因为它无法负担GPU在后台运行,因为便携设备的空间和内存限制。在这项研究中,我们提出了一种基于深度学习的番茄叶片病害检测方法,该方法使用了一系列卷积和深度卷积层。该模型仅包含17,209个可训练参数。该模型能够在使用较少参数的情况下,从公开可用的PlantVillage数据集中获得92.10%的番茄作物精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomato leaf disease detection using series of Convolutional and Depthwise Convolutional Layers
Numerous studies have focused on enhancing the effectiveness of identifying leaf diseases through image classification. However, it is essential to develop a classification system with fewer parameters to enable it to operate efficiently on mobile devices. As a result, A lot of research works are going on to make the neural network computationally light so that we can utilise these networks on a mobile device as it cannot afford a GPU to run in background because of the space and memory limitations of a portable device. In this study, we propose a deep learningbased approach for tomato leaf disease detection using a series of convolutional and depthwise convolutional layers. The proposed model contains only 17,209 trainable parameters. The model was able to achieve high accuracy of 92.10 % on tomato crop from a publicly available PlantVillage dataset while utilizing a smaller number of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信