股份回购预测的多准则决策辅助模型研究

Dimitris Andriosopoulos, Chrysovalantis Gaganis, Fotios Pasiouras, C. Zopounidis
{"title":"股份回购预测的多准则决策辅助模型研究","authors":"Dimitris Andriosopoulos, Chrysovalantis Gaganis, Fotios Pasiouras, C. Zopounidis","doi":"10.2139/ssrn.1668594","DOIUrl":null,"url":null,"abstract":"This study presents the first attempt to develop classification models for the prediction of share repurchases using multicriteria decision aid (MCDA) methods. The MCDA models are developed using two methods namely UTilites Additives DIScriminantes (UTADIS) and ELimination and Choice Expressing REality (ELECTRE) TRI, through a ten-fold cross-validation approach. The sample consists of 1060 firms from France, Germany and the UK. We find that both MCDA models achieve quite satisfactory classification accuracies in the validation sample and they outperform both logistic regression and chance predictions.","PeriodicalId":340291,"journal":{"name":"ERN: Intertemporal Firm Choice & Growth","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Multicriteria Decision Aid Models for the Prediction of Share Repurchases\",\"authors\":\"Dimitris Andriosopoulos, Chrysovalantis Gaganis, Fotios Pasiouras, C. Zopounidis\",\"doi\":\"10.2139/ssrn.1668594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the first attempt to develop classification models for the prediction of share repurchases using multicriteria decision aid (MCDA) methods. The MCDA models are developed using two methods namely UTilites Additives DIScriminantes (UTADIS) and ELimination and Choice Expressing REality (ELECTRE) TRI, through a ten-fold cross-validation approach. The sample consists of 1060 firms from France, Germany and the UK. We find that both MCDA models achieve quite satisfactory classification accuracies in the validation sample and they outperform both logistic regression and chance predictions.\",\"PeriodicalId\":340291,\"journal\":{\"name\":\"ERN: Intertemporal Firm Choice & Growth\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Intertemporal Firm Choice & Growth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1668594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Intertemporal Firm Choice & Growth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1668594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次尝试使用多准则决策辅助(MCDA)方法建立股票回购预测的分类模型。MCDA模型采用两种方法开发,即效用添加剂判别(UTADIS)和消除和选择表达现实(ELECTRE) TRI,通过十倍交叉验证方法。样本包括来自法国、德国和英国的1060家公司。我们发现两种MCDA模型在验证样本中都达到了相当满意的分类精度,并且它们优于逻辑回归和机会预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing Multicriteria Decision Aid Models for the Prediction of Share Repurchases
This study presents the first attempt to develop classification models for the prediction of share repurchases using multicriteria decision aid (MCDA) methods. The MCDA models are developed using two methods namely UTilites Additives DIScriminantes (UTADIS) and ELimination and Choice Expressing REality (ELECTRE) TRI, through a ten-fold cross-validation approach. The sample consists of 1060 firms from France, Germany and the UK. We find that both MCDA models achieve quite satisfactory classification accuracies in the validation sample and they outperform both logistic regression and chance predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信