V. Plaksin, V. Riaby, Ji Hoon Kim, C. Choi, Heon-Ju Lee
{"title":"新型电弧等离子体对硅衬底的等离子体化学处理","authors":"V. Plaksin, V. Riaby, Ji Hoon Kim, C. Choi, Heon-Ju Lee","doi":"10.1109/DEIV.2006.357361","DOIUrl":null,"url":null,"abstract":"A novel arc plasma source is proposed, which has low anode erosion rate allowing it to generate nearly spectrally clean plasma flow at the lifetime of 103~104 hours. The temperature of plasma near the nozzle exit is below 100 degC at arc power up to 2 kW. The design and characteristics of the plasmatron are discussed. Vacuum experiments with heterogeneous plasma-chemical processes showed that this device can serve as an effective tool for plasma-chemical treatment at pressures P~100 mbar. As an example, plasma-chemical etching processes for mono-crystal silicon in CF4 plasma and photo-resist on a silicon wafer in air, O2 and CF4 plasmas have been demonstrated","PeriodicalId":369861,"journal":{"name":"2006 International Symposium on Discharges and Electrical Insulation in Vacuum","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Chemical Processing of Silicon Substrates Using a Novel Arc Plasmatron\",\"authors\":\"V. Plaksin, V. Riaby, Ji Hoon Kim, C. Choi, Heon-Ju Lee\",\"doi\":\"10.1109/DEIV.2006.357361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel arc plasma source is proposed, which has low anode erosion rate allowing it to generate nearly spectrally clean plasma flow at the lifetime of 103~104 hours. The temperature of plasma near the nozzle exit is below 100 degC at arc power up to 2 kW. The design and characteristics of the plasmatron are discussed. Vacuum experiments with heterogeneous plasma-chemical processes showed that this device can serve as an effective tool for plasma-chemical treatment at pressures P~100 mbar. As an example, plasma-chemical etching processes for mono-crystal silicon in CF4 plasma and photo-resist on a silicon wafer in air, O2 and CF4 plasmas have been demonstrated\",\"PeriodicalId\":369861,\"journal\":{\"name\":\"2006 International Symposium on Discharges and Electrical Insulation in Vacuum\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Discharges and Electrical Insulation in Vacuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEIV.2006.357361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Discharges and Electrical Insulation in Vacuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2006.357361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma-Chemical Processing of Silicon Substrates Using a Novel Arc Plasmatron
A novel arc plasma source is proposed, which has low anode erosion rate allowing it to generate nearly spectrally clean plasma flow at the lifetime of 103~104 hours. The temperature of plasma near the nozzle exit is below 100 degC at arc power up to 2 kW. The design and characteristics of the plasmatron are discussed. Vacuum experiments with heterogeneous plasma-chemical processes showed that this device can serve as an effective tool for plasma-chemical treatment at pressures P~100 mbar. As an example, plasma-chemical etching processes for mono-crystal silicon in CF4 plasma and photo-resist on a silicon wafer in air, O2 and CF4 plasmas have been demonstrated