Web2.0社会标签系统的混合TRS-PSO聚类方法

H. Inbarani H., Selva Kumar S, Ahmad Taher Azar, A. Hassanien
{"title":"Web2.0社会标签系统的混合TRS-PSO聚类方法","authors":"H. Inbarani H., Selva Kumar S, Ahmad Taher Azar, A. Hassanien","doi":"10.4018/ijrsda.2015010102","DOIUrl":null,"url":null,"abstract":"Social tagging is one of the vital attributes of WEB2.0. The challenge of Web 2.0 is a gigantic measure of information created over a brief time. Tags are broadly used to interpret and arrange the web 2.0 assets. Tag clustering is the procedure of grouping the comparable tags into clusters. The tag clustering is extremely valuable for researching and organizing the web2. 0 resources furthermore critical for the achievement of Social Bookmarking frameworks. In this paper, the authors proposed a hybrid Tolerance Rough Set Based Firefly TRS-Firefly-K-Means clustering algorithm for clustering tags in social systems. At that stage, the proposed system is contrasted with the benchmark algorithm K-Means clustering and Particle Swarm optimization PSO based Clustering technique. The experimental analysis outlines the viability of the suggested methodology.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System\",\"authors\":\"H. Inbarani H., Selva Kumar S, Ahmad Taher Azar, A. Hassanien\",\"doi\":\"10.4018/ijrsda.2015010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social tagging is one of the vital attributes of WEB2.0. The challenge of Web 2.0 is a gigantic measure of information created over a brief time. Tags are broadly used to interpret and arrange the web 2.0 assets. Tag clustering is the procedure of grouping the comparable tags into clusters. The tag clustering is extremely valuable for researching and organizing the web2. 0 resources furthermore critical for the achievement of Social Bookmarking frameworks. In this paper, the authors proposed a hybrid Tolerance Rough Set Based Firefly TRS-Firefly-K-Means clustering algorithm for clustering tags in social systems. At that stage, the proposed system is contrasted with the benchmark algorithm K-Means clustering and Particle Swarm optimization PSO based Clustering technique. The experimental analysis outlines the viability of the suggested methodology.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijrsda.2015010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrsda.2015010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

社会标签是WEB2.0的重要属性之一。Web 2.0的挑战是在短时间内创建的海量信息。标签被广泛用于解释和安排web 2.0资产。标签聚类是将可比较的标签分组成簇的过程。标签聚类对于web2的研究和组织是非常有价值的。0资源对实现社会书签框架至关重要。本文提出了一种基于混合容忍粗糙集的Firefly TRS-Firefly-K-Means聚类算法,用于社会系统中标签的聚类。在此阶段,将提出的系统与基准算法K-Means聚类和基于粒子群优化的PSO聚类技术进行了对比。实验分析概述了所建议方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System
Social tagging is one of the vital attributes of WEB2.0. The challenge of Web 2.0 is a gigantic measure of information created over a brief time. Tags are broadly used to interpret and arrange the web 2.0 assets. Tag clustering is the procedure of grouping the comparable tags into clusters. The tag clustering is extremely valuable for researching and organizing the web2. 0 resources furthermore critical for the achievement of Social Bookmarking frameworks. In this paper, the authors proposed a hybrid Tolerance Rough Set Based Firefly TRS-Firefly-K-Means clustering algorithm for clustering tags in social systems. At that stage, the proposed system is contrasted with the benchmark algorithm K-Means clustering and Particle Swarm optimization PSO based Clustering technique. The experimental analysis outlines the viability of the suggested methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信