用于自旋量子位读出的单电子晶体管紧凑模型

S. van Rijs, İlke Ercan, A. Vladimirescu, F. Sebastiano
{"title":"用于自旋量子位读出的单电子晶体管紧凑模型","authors":"S. van Rijs, İlke Ercan, A. Vladimirescu, F. Sebastiano","doi":"10.1109/SMACD58065.2023.10192251","DOIUrl":null,"url":null,"abstract":"Quantum computers process information stored in quantum bits (qubits), which must be controlled and read out by a traditional electronic interface. Co-designing and cooptimizing such a quantum-classical complex system requires efficient simulators to emulate the qubits and their interaction with classical electronics. For spin-qubit readout, a single electron transistor (SET) is often employed. To build a toolset that can co-simulate the spin qubit system with the classical control and readout interface, a compact and efficient SET model is needed. This paper presents a new compact empirical SET model based on state-of-the-art SET measurement and extracted by a custom function-fitting python program. Within the target source-drain voltage range of ±1000μV , the model is accurate for circuit (SPICE) simulation. Furthermore, the empirical model is represented by a set of equations that enables instantaneous output response requiring a negligible simulation time. With this new SET model, a quantum-electronics co-simulator such as SPINE can now be enhanced to simulate the readout in addition to the control circuits of spin qubits, thus enabling the design of the complete integrated circuit (IC) required for large-scale quantum computers.","PeriodicalId":239306,"journal":{"name":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Electron-Transistor Compact Model for Spin-Qubit Readout\",\"authors\":\"S. van Rijs, İlke Ercan, A. Vladimirescu, F. Sebastiano\",\"doi\":\"10.1109/SMACD58065.2023.10192251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers process information stored in quantum bits (qubits), which must be controlled and read out by a traditional electronic interface. Co-designing and cooptimizing such a quantum-classical complex system requires efficient simulators to emulate the qubits and their interaction with classical electronics. For spin-qubit readout, a single electron transistor (SET) is often employed. To build a toolset that can co-simulate the spin qubit system with the classical control and readout interface, a compact and efficient SET model is needed. This paper presents a new compact empirical SET model based on state-of-the-art SET measurement and extracted by a custom function-fitting python program. Within the target source-drain voltage range of ±1000μV , the model is accurate for circuit (SPICE) simulation. Furthermore, the empirical model is represented by a set of equations that enables instantaneous output response requiring a negligible simulation time. With this new SET model, a quantum-electronics co-simulator such as SPINE can now be enhanced to simulate the readout in addition to the control circuits of spin qubits, thus enabling the design of the complete integrated circuit (IC) required for large-scale quantum computers.\",\"PeriodicalId\":239306,\"journal\":{\"name\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD58065.2023.10192251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD58065.2023.10192251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算机处理存储在量子比特(量子位)中的信息,这些信息必须通过传统的电子接口进行控制和读出。共同设计和优化这样一个量子-经典复杂系统需要有效的模拟器来模拟量子比特及其与经典电子学的相互作用。对于自旋量子位读出,通常采用单电子晶体管(SET)。为了建立一个能够与经典控制和读出接口共同模拟自旋量子比特系统的工具集,需要一个紧凑而高效的SET模型。本文提出了一种新的紧凑的经验SET模型,该模型基于最先进的SET测量,并由自定义函数拟合python程序提取。在±1000μV的目标源漏电压范围内,该模型对电路(SPICE)仿真是准确的。此外,经验模型由一组方程表示,使瞬时输出响应需要可忽略不计的模拟时间。有了这种新的SET模型,量子电子学联合模拟器(如SPINE)现在可以增强以模拟自旋量子位元的读出和控制电路,从而使大型量子计算机所需的完整集成电路(IC)的设计成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Electron-Transistor Compact Model for Spin-Qubit Readout
Quantum computers process information stored in quantum bits (qubits), which must be controlled and read out by a traditional electronic interface. Co-designing and cooptimizing such a quantum-classical complex system requires efficient simulators to emulate the qubits and their interaction with classical electronics. For spin-qubit readout, a single electron transistor (SET) is often employed. To build a toolset that can co-simulate the spin qubit system with the classical control and readout interface, a compact and efficient SET model is needed. This paper presents a new compact empirical SET model based on state-of-the-art SET measurement and extracted by a custom function-fitting python program. Within the target source-drain voltage range of ±1000μV , the model is accurate for circuit (SPICE) simulation. Furthermore, the empirical model is represented by a set of equations that enables instantaneous output response requiring a negligible simulation time. With this new SET model, a quantum-electronics co-simulator such as SPINE can now be enhanced to simulate the readout in addition to the control circuits of spin qubits, thus enabling the design of the complete integrated circuit (IC) required for large-scale quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信