{"title":"非齐次波动方程的Hyers-Ulam-Rassias稳定性","authors":"ماهر نظمي قرواني","doi":"10.33977/2106-000-003-001","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the Duhamel’s Principle to prove the Hyers-Ulam-Rassias stability for one-dimensional inhomogeneous wave equation on an infinite homogeneous string with zero initial conditions. We have also established the Hyers-Ulam-Rassias stability of nonzero initial value problem of the inhomogeneous wave equation for an infinite string. Some illustrative examples are given.","PeriodicalId":139540,"journal":{"name":"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyers-Ulam-Rassias Stability Of The Inhomogeneous Wave Equation\",\"authors\":\"ماهر نظمي قرواني\",\"doi\":\"10.33977/2106-000-003-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply the Duhamel’s Principle to prove the Hyers-Ulam-Rassias stability for one-dimensional inhomogeneous wave equation on an infinite homogeneous string with zero initial conditions. We have also established the Hyers-Ulam-Rassias stability of nonzero initial value problem of the inhomogeneous wave equation for an infinite string. Some illustrative examples are given.\",\"PeriodicalId\":139540,\"journal\":{\"name\":\"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33977/2106-000-003-001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33977/2106-000-003-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyers-Ulam-Rassias Stability Of The Inhomogeneous Wave Equation
In this paper, we apply the Duhamel’s Principle to prove the Hyers-Ulam-Rassias stability for one-dimensional inhomogeneous wave equation on an infinite homogeneous string with zero initial conditions. We have also established the Hyers-Ulam-Rassias stability of nonzero initial value problem of the inhomogeneous wave equation for an infinite string. Some illustrative examples are given.