{"title":"一种用于数值程序测试的测试套件最小化技术","authors":"Prashanta Saha, C. Izurieta, Upulee Kanewala","doi":"10.1109/SERA57763.2023.10197757","DOIUrl":null,"url":null,"abstract":"Metamorphic testing is a technique that uses metamorphic relations (i.e., necessary properties of the software under test), to construct new test cases (i.e., follow-up test cases), from existing test cases (i.e., source test cases). Metamorphic testing allows for the verification of testing results without the need of test oracles (a mechanism to detect the correctness of the outcomes of a program), and it has been widely used in many application domains to detect real-world faults. Numerous investigations have been conducted to further improve the effectiveness of metamorphic testing. Recent studies have emerged suggesting a new research direction on the generation and selection of source test cases that are effective in fault detection. Herein, we present two important findings: i) a mutant reduction strategy that is applied to increase the testing efficiency of source test cases, and ii) a test suite minimization technique to help reduce the testing costs without trading off fault-finding effectiveness. To validate our results, an empirical study was conducted to demonstrate the increase in efficiency and fault-finding effectiveness of source test cases. The results from the experiment provide evidence to support our claims.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Test Suite Minimization Technique for Testing Numerical Programs\",\"authors\":\"Prashanta Saha, C. Izurieta, Upulee Kanewala\",\"doi\":\"10.1109/SERA57763.2023.10197757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamorphic testing is a technique that uses metamorphic relations (i.e., necessary properties of the software under test), to construct new test cases (i.e., follow-up test cases), from existing test cases (i.e., source test cases). Metamorphic testing allows for the verification of testing results without the need of test oracles (a mechanism to detect the correctness of the outcomes of a program), and it has been widely used in many application domains to detect real-world faults. Numerous investigations have been conducted to further improve the effectiveness of metamorphic testing. Recent studies have emerged suggesting a new research direction on the generation and selection of source test cases that are effective in fault detection. Herein, we present two important findings: i) a mutant reduction strategy that is applied to increase the testing efficiency of source test cases, and ii) a test suite minimization technique to help reduce the testing costs without trading off fault-finding effectiveness. To validate our results, an empirical study was conducted to demonstrate the increase in efficiency and fault-finding effectiveness of source test cases. The results from the experiment provide evidence to support our claims.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Test Suite Minimization Technique for Testing Numerical Programs
Metamorphic testing is a technique that uses metamorphic relations (i.e., necessary properties of the software under test), to construct new test cases (i.e., follow-up test cases), from existing test cases (i.e., source test cases). Metamorphic testing allows for the verification of testing results without the need of test oracles (a mechanism to detect the correctness of the outcomes of a program), and it has been widely used in many application domains to detect real-world faults. Numerous investigations have been conducted to further improve the effectiveness of metamorphic testing. Recent studies have emerged suggesting a new research direction on the generation and selection of source test cases that are effective in fault detection. Herein, we present two important findings: i) a mutant reduction strategy that is applied to increase the testing efficiency of source test cases, and ii) a test suite minimization technique to help reduce the testing costs without trading off fault-finding effectiveness. To validate our results, an empirical study was conducted to demonstrate the increase in efficiency and fault-finding effectiveness of source test cases. The results from the experiment provide evidence to support our claims.