可伸缩快速约简算法:迭代MapReduce方法

P. Singh, P. Prasad
{"title":"可伸缩快速约简算法:迭代MapReduce方法","authors":"P. Singh, P. Prasad","doi":"10.1145/2888451.2888476","DOIUrl":null,"url":null,"abstract":"Feature selection by reduct computation is the key technique for knowledge acquistion using rough set theory. Existing MapReduce based reduct algorithms use Hadoop Map Reduce framework, which is not suitable for iterative algorithms. Paper aims to design and implementation of Iterative MapReduce based Quick reduct algorithm using Twister framework. The proposed In_MRQRA Algorithm has partial granular level computations at mappers and granular computations at reducer. Experimental analysis on KDD-Cup99 dataset empirically established the relevence of proposed approach.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scalable Quick Reduct Algorithm: Iterative MapReduce Approach\",\"authors\":\"P. Singh, P. Prasad\",\"doi\":\"10.1145/2888451.2888476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection by reduct computation is the key technique for knowledge acquistion using rough set theory. Existing MapReduce based reduct algorithms use Hadoop Map Reduce framework, which is not suitable for iterative algorithms. Paper aims to design and implementation of Iterative MapReduce based Quick reduct algorithm using Twister framework. The proposed In_MRQRA Algorithm has partial granular level computations at mappers and granular computations at reducer. Experimental analysis on KDD-Cup99 dataset empirically established the relevence of proposed approach.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于约简计算的特征选择是粗糙集知识获取的关键技术。现有基于MapReduce的约简算法使用Hadoop MapReduce框架,不适合迭代算法。本文旨在利用Twister框架设计并实现基于迭代MapReduce的快速约简算法。提出的In_MRQRA算法在映射器上进行了部分粒度级计算,在reducer上进行了粒度级计算。在KDD-Cup99数据集上的实验分析经验证明了所提方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Quick Reduct Algorithm: Iterative MapReduce Approach
Feature selection by reduct computation is the key technique for knowledge acquistion using rough set theory. Existing MapReduce based reduct algorithms use Hadoop Map Reduce framework, which is not suitable for iterative algorithms. Paper aims to design and implementation of Iterative MapReduce based Quick reduct algorithm using Twister framework. The proposed In_MRQRA Algorithm has partial granular level computations at mappers and granular computations at reducer. Experimental analysis on KDD-Cup99 dataset empirically established the relevence of proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信