机械臂低维控制的状态条件线性映射学习

Michael Przystupa, Kerrick Johnstonbaugh, Zichen Zhang, Laura Petrich, Masood Dehghan, Faezeh Haghverd, Martin Jagersand
{"title":"机械臂低维控制的状态条件线性映射学习","authors":"Michael Przystupa, Kerrick Johnstonbaugh, Zichen Zhang, Laura Petrich, Masood Dehghan, Faezeh Haghverd, Martin Jagersand","doi":"10.1109/ICRA48891.2023.10160585","DOIUrl":null,"url":null,"abstract":"Identifying an appropriate task space can simplify solving robotic manipulation problems. One solution is deploying control algorithms in a learned low-dimensional action space. Linear and nonlinear action mapping methods have trade-offs between simplicity and the ability to express motor commands outside of a single low-dimensional subspace. We propose that learning local linear action representations can achieve both of these benefits. Our state-conditioned linear maps ensure that for any given state, the high-dimensional robotic actuation is linear in the low-dimensional actions. As the robot state evolves, so do the action mappings, so that necessary motions can be performed during a task. These local linear representations guarantee desirable theoretical properties by design. We validate these findings empirically through two user studies. Results suggest state-conditioned linear maps outperform conditional autoencoder and PCA baselines on a pick-and-place task and perform comparably to mode switching in a more complex pouring task.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning State Conditioned Linear Mappings for Low-Dimensional Control of Robotic Manipulators\",\"authors\":\"Michael Przystupa, Kerrick Johnstonbaugh, Zichen Zhang, Laura Petrich, Masood Dehghan, Faezeh Haghverd, Martin Jagersand\",\"doi\":\"10.1109/ICRA48891.2023.10160585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying an appropriate task space can simplify solving robotic manipulation problems. One solution is deploying control algorithms in a learned low-dimensional action space. Linear and nonlinear action mapping methods have trade-offs between simplicity and the ability to express motor commands outside of a single low-dimensional subspace. We propose that learning local linear action representations can achieve both of these benefits. Our state-conditioned linear maps ensure that for any given state, the high-dimensional robotic actuation is linear in the low-dimensional actions. As the robot state evolves, so do the action mappings, so that necessary motions can be performed during a task. These local linear representations guarantee desirable theoretical properties by design. We validate these findings empirically through two user studies. Results suggest state-conditioned linear maps outperform conditional autoencoder and PCA baselines on a pick-and-place task and perform comparably to mode switching in a more complex pouring task.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定合适的任务空间可以简化机器人操作问题的解决。一种解决方案是在学习的低维动作空间中部署控制算法。线性和非线性动作映射方法在简单性和在单个低维子空间之外表达运动命令的能力之间进行了权衡。我们提出学习局部线性动作表示可以实现这两种好处。我们的状态条件线性映射确保在任何给定状态下,高维机器人的驱动在低维动作中是线性的。随着机器人状态的变化,动作映射也在变化,以便在任务期间执行必要的动作。这些局部线性表示通过设计保证了理想的理论性质。我们通过两个用户研究实证验证了这些发现。结果表明,状态条件线性映射在拾取和放置任务上优于条件自编码器和PCA基线,并且在更复杂的浇注任务中执行与模式切换相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning State Conditioned Linear Mappings for Low-Dimensional Control of Robotic Manipulators
Identifying an appropriate task space can simplify solving robotic manipulation problems. One solution is deploying control algorithms in a learned low-dimensional action space. Linear and nonlinear action mapping methods have trade-offs between simplicity and the ability to express motor commands outside of a single low-dimensional subspace. We propose that learning local linear action representations can achieve both of these benefits. Our state-conditioned linear maps ensure that for any given state, the high-dimensional robotic actuation is linear in the low-dimensional actions. As the robot state evolves, so do the action mappings, so that necessary motions can be performed during a task. These local linear representations guarantee desirable theoretical properties by design. We validate these findings empirically through two user studies. Results suggest state-conditioned linear maps outperform conditional autoencoder and PCA baselines on a pick-and-place task and perform comparably to mode switching in a more complex pouring task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信