在线自组装复合体

Neeraj Koul, J. Lathrop, J. H. Lutz, Vasant G Honavar
{"title":"在线自组装复合体","authors":"Neeraj Koul, J. Lathrop, J. H. Lutz, Vasant G Honavar","doi":"10.1109/EIT.2008.4554344","DOIUrl":null,"url":null,"abstract":"The Tile Assembly Model (TAM) is a mathematical model of nanoscale self-assembly. In this paper we this model to define an on-line self assembly models called Fair Online Assembly(FOAF) and its variation called the Bounded Fair Online Assembly (FOAB). We show that these two models are not equivalent to each other. We also introduce the concepts of Binary and Trinary Complexes for a Tile Assembly System (TAS) and show if the complexes have a special property (called Frontier Turn Off Point-FTP) then the corresponding Self Assemblies are FOAF. Finally we argue that FOAF, FOAB and the size of the T-frontier at the frontier turn off point may be used to measure the complexity of the TAS.","PeriodicalId":215400,"journal":{"name":"2008 IEEE International Conference on Electro/Information Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexes of on-line self assembly\",\"authors\":\"Neeraj Koul, J. Lathrop, J. H. Lutz, Vasant G Honavar\",\"doi\":\"10.1109/EIT.2008.4554344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tile Assembly Model (TAM) is a mathematical model of nanoscale self-assembly. In this paper we this model to define an on-line self assembly models called Fair Online Assembly(FOAF) and its variation called the Bounded Fair Online Assembly (FOAB). We show that these two models are not equivalent to each other. We also introduce the concepts of Binary and Trinary Complexes for a Tile Assembly System (TAS) and show if the complexes have a special property (called Frontier Turn Off Point-FTP) then the corresponding Self Assemblies are FOAF. Finally we argue that FOAF, FOAB and the size of the T-frontier at the frontier turn off point may be used to measure the complexity of the TAS.\",\"PeriodicalId\":215400,\"journal\":{\"name\":\"2008 IEEE International Conference on Electro/Information Technology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Electro/Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2008.4554344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2008.4554344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

瓦片组装模型(TAM)是纳米尺度自组装的数学模型。本文将该模型定义为一种在线自装配模型,称为公平在线装配(FOAF),其变体称为有界公平在线装配(FOAB)。我们证明了这两个模型是不等价的。我们还介绍了贴片组装系统(TAS)的二元和三元配合物的概念,并说明如果配合物具有特殊的性质(称为边界关闭点ftp),则相应的自组装是FOAF。最后,我们认为FOAF、FOAB和边界关闭点处t边界的大小可以用来衡量TAS的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexes of on-line self assembly
The Tile Assembly Model (TAM) is a mathematical model of nanoscale self-assembly. In this paper we this model to define an on-line self assembly models called Fair Online Assembly(FOAF) and its variation called the Bounded Fair Online Assembly (FOAB). We show that these two models are not equivalent to each other. We also introduce the concepts of Binary and Trinary Complexes for a Tile Assembly System (TAS) and show if the complexes have a special property (called Frontier Turn Off Point-FTP) then the corresponding Self Assemblies are FOAF. Finally we argue that FOAF, FOAB and the size of the T-frontier at the frontier turn off point may be used to measure the complexity of the TAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信