带冠多级压气机轮毂流动的周期非定常运动学

Jaehyoun Lee, S. Lim, Hyoun-Woo Shin, Sungryong Lee, S. Song
{"title":"带冠多级压气机轮毂流动的周期非定常运动学","authors":"Jaehyoun Lee, S. Lim, Hyoun-Woo Shin, Sungryong Lee, S. Song","doi":"10.1115/gt2021-58551","DOIUrl":null,"url":null,"abstract":"Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded 3rd-stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the 2nd-stage stator and 3rd-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the 3rd-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the 3rd-stage stator merges with the 3rd-stage rotor wake to create streamwise vorticity at the 3rd-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded 3rd-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the 3rd-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.","PeriodicalId":257596,"journal":{"name":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Unsteady Kinematics of Hub Flows in a Shrouded Multistage Compressor\",\"authors\":\"Jaehyoun Lee, S. Lim, Hyoun-Woo Shin, Sungryong Lee, S. Song\",\"doi\":\"10.1115/gt2021-58551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded 3rd-stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the 2nd-stage stator and 3rd-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the 3rd-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the 3rd-stage stator merges with the 3rd-stage rotor wake to create streamwise vorticity at the 3rd-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded 3rd-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the 3rd-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.\",\"PeriodicalId\":257596,\"journal\":{\"name\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次测量了带冠多级低速轴流压气机的周期性非定常流动特性。数据已经在一个笼罩的第三级定子的入口和出口获得,特别关注轮毂流动。新发现的带冠多级压气机的轮毂流动特征与跨中或未带冠(即悬臂式)压气机的轮毂流动特征不同。首先,第二级定子和第三级转子尾迹的合并导致第三级定子进口轮毂附近转子尾迹压力面正向径向迁移。其次,三级定子的低动量迷宫式密封泄漏流与三级转子尾迹合并,在三级定子进口轮毂处形成流向涡量。第三,与不带冠定子相反,带冠三级定子的吸力侧轮毂角分离减小了转子尾迹拉伸。因此,在第三级定子出口轮毂处,速度扰动衰减较小,流动角周期波动幅值比跨中处大。旋翼尾迹的正向径向迁移和尾迹拉伸的减小预计会降低效率,而流向涡量的产生预计会提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Unsteady Kinematics of Hub Flows in a Shrouded Multistage Compressor
Periodic unsteady flow kinematics in a shrouded multistage low-speed axial compressor has been measured for the first time. Data have been acquired at the inlet and exit of a shrouded 3rd-stage stator with a particular focus on the hub flows. The newly found features of the hub flow in a shrouded multistage compressor are different from those at the midspan or in unshrouded (i.e., cantilevered) compressors. First, the merging of the 2nd-stage stator and 3rd-stage rotor wakes causes positive radial migration near the rotor wake pressure surface at the hub of the 3rd-stage stator inlet. Second, the low-momentum labyrinth seal leakage flow of the 3rd-stage stator merges with the 3rd-stage rotor wake to create streamwise vorticity at the 3rd-stage stator inlet hub. Third, contrary to unshrouded stators, suction side hub corner separation in the shrouded 3rd-stage stator reduces rotor wake stretching. Thus, velocity disturbances are attenuated less, and amplitudes of periodic fluctuations in flow angles are larger at the 3rd-stage stator exit hub than at midspan. The positive radial migration of the rotor wake hub flow and wake stretching reduction are expected to decrease efficiency, whereas streamwise vorticity generation is expected to increase efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信