通过分层非参数过程总结对比主题

Z. Ren, M. de Rijke
{"title":"通过分层非参数过程总结对比主题","authors":"Z. Ren, M. de Rijke","doi":"10.1145/2766462.2767713","DOIUrl":null,"url":null,"abstract":"Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes\",\"authors\":\"Z. Ren, M. de Rijke\",\"doi\":\"10.1145/2766462.2767713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

给定一个感兴趣的话题,对比主题是一组对立的观点。我们解决了总结对比主题的任务:给定一组固执己见的文档,选择有意义的句子来表示这些文档中存在的对比主题。有几个因素使这成为一个具有挑战性的问题:未知的主题数量,主题之间未知的关系,以及比较句的提取。我们的方法有三个核心成分:对比主题建模、多样化主题提取和对比主题总结。具体来说,我们提出了一个层次非参数模型来描述主题之间的层次关系;该模型用于从嵌套的中餐馆流程中推断主题线程。我们通过使用结构化决定点过程来选择一组高质量的不同主题,从而增强主题的多样性。最后,我们将对比主题配对,并采用迭代优化算法来选择句子,明确考虑对比、相关性和多样性。在三个数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes
Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信