{"title":"通过分层非参数过程总结对比主题","authors":"Z. Ren, M. de Rijke","doi":"10.1145/2766462.2767713","DOIUrl":null,"url":null,"abstract":"Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes\",\"authors\":\"Z. Ren, M. de Rijke\",\"doi\":\"10.1145/2766462.2767713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Summarizing Contrastive Themes via Hierarchical Non-Parametric Processes
Given a topic of interest, a contrastive theme is a group of opposing pairs of viewpoints. We address the task of summarizing contrastive themes: given a set of opinionated documents, select meaningful sentences to represent contrastive themes present in those documents. Several factors make this a challenging problem: unknown numbers of topics, unknown relationships among topics, and the extraction of comparative sentences. Our approach has three core ingredients: contrastive theme modeling, diverse theme extraction, and contrastive theme summarization. Specifically, we present a hierarchical non-parametric model to describe hierarchical relations among topics; this model is used to infer threads of topics as themes from the nested Chinese restaurant process. We enhance the diversity of themes by using structured determinantal point processes for selecting a set of diverse themes with high quality. Finally, we pair contrastive themes and employ an iterative optimization algorithm to select sentences, explicitly considering contrast, relevance, and diversity. Experiments on three datasets demonstrate the effectiveness of our method.