基于注意的神经网络检测和解释自我承认的技术债务

Xin Wang
{"title":"基于注意的神经网络检测和解释自我承认的技术债务","authors":"Xin Wang","doi":"10.1145/3324884.3416583","DOIUrl":null,"url":null,"abstract":"Self-Admitted Technical Debt (SATD) is a sub-type of technical debt. It is introduced to represent such technical debts that are intentionally introduced by developers in the process of software development. While being able to gain short-term benefits, the introduction of SATDs often requires to be paid back later with a higher cost, e.g., introducing bugs to the software or increasing the complexity of the software. To cope with these issues, our community has proposed various machine learning-based approaches to detect SATDs. These approaches, however, are either not generic that usually require manual feature engineering efforts or do not provide promising means to explain the predicted outcomes. To that end, we propose to the community a novel approach, namely HATD (Hybrid Attention-based method for self-admitted Technical Debt detection), to detect and explain SATDs using attention-based neural networks. Through extensive experiments on 445,365 comments in 20 projects, we show that HATD is effective in detecting SATDs on both in-the-lab and in-the-wild datasets under both within-project and cross-project settings. HATD also outperforms the state-of-the-art approaches in detecting and explaining SATDs.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Detecting and Explaining Self-Admitted Technical Debts with Attention-based Neural Networks\",\"authors\":\"Xin Wang\",\"doi\":\"10.1145/3324884.3416583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-Admitted Technical Debt (SATD) is a sub-type of technical debt. It is introduced to represent such technical debts that are intentionally introduced by developers in the process of software development. While being able to gain short-term benefits, the introduction of SATDs often requires to be paid back later with a higher cost, e.g., introducing bugs to the software or increasing the complexity of the software. To cope with these issues, our community has proposed various machine learning-based approaches to detect SATDs. These approaches, however, are either not generic that usually require manual feature engineering efforts or do not provide promising means to explain the predicted outcomes. To that end, we propose to the community a novel approach, namely HATD (Hybrid Attention-based method for self-admitted Technical Debt detection), to detect and explain SATDs using attention-based neural networks. Through extensive experiments on 445,365 comments in 20 projects, we show that HATD is effective in detecting SATDs on both in-the-lab and in-the-wild datasets under both within-project and cross-project settings. HATD also outperforms the state-of-the-art approaches in detecting and explaining SATDs.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3416583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

自我承认的技术债务(SATD)是技术债务的一个子类型。引入它是为了表示开发人员在软件开发过程中有意引入的技术债务。在能够获得短期利益的同时,引入satd往往需要在以后以更高的成本来偿还,例如,向软件引入错误或增加软件的复杂性。为了解决这些问题,我们的社区提出了各种基于机器学习的方法来检测satd。然而,这些方法要么不是通用的,通常需要人工特征工程的努力,要么不能提供有希望的方法来解释预测的结果。为此,我们向社区提出了一种新颖的方法,即HATD(基于注意力的混合方法,用于自我承认的技术债务检测),使用基于注意力的神经网络来检测和解释satd。通过对20个项目中445,365条评论的广泛实验,我们表明,在项目内和跨项目设置下,HATD在实验室和野外数据集上都能有效地检测satd。HATD在检测和解释satd方面也优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting and Explaining Self-Admitted Technical Debts with Attention-based Neural Networks
Self-Admitted Technical Debt (SATD) is a sub-type of technical debt. It is introduced to represent such technical debts that are intentionally introduced by developers in the process of software development. While being able to gain short-term benefits, the introduction of SATDs often requires to be paid back later with a higher cost, e.g., introducing bugs to the software or increasing the complexity of the software. To cope with these issues, our community has proposed various machine learning-based approaches to detect SATDs. These approaches, however, are either not generic that usually require manual feature engineering efforts or do not provide promising means to explain the predicted outcomes. To that end, we propose to the community a novel approach, namely HATD (Hybrid Attention-based method for self-admitted Technical Debt detection), to detect and explain SATDs using attention-based neural networks. Through extensive experiments on 445,365 comments in 20 projects, we show that HATD is effective in detecting SATDs on both in-the-lab and in-the-wild datasets under both within-project and cross-project settings. HATD also outperforms the state-of-the-art approaches in detecting and explaining SATDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信