从房间布局和图像外角看以自我为中心的室内定位

Xiaowei Chen, Guoliang Fan
{"title":"从房间布局和图像外角看以自我为中心的室内定位","authors":"Xiaowei Chen, Guoliang Fan","doi":"10.1109/ICCVW54120.2021.00385","DOIUrl":null,"url":null,"abstract":"Egocentric indoor localization is an important issue for many in-home smart technologies. Room layouts have been used to characterize indoor scene images by a few typical space configurations defined by boundary lines and junctions, which are mostly detectable or inferable by deep learning methods. In this paper, we study camera pose estimation for egocentric indoor localization from room layouts that is cast as a PnL (Perspective-n-Line) problem. Specifically, image outer corners (IOCs), which are the intersecting points between image borders and room layout boundaries, are introduced to improve PnL optimization by involving additional auxiliary lines in an image. This leads to a new PnL-IOC algorithm where 3D correspondence estimation of IOCs are jointly solved with camera pose optimization in the iterative Gauss-Newton algorithm. Experiment results on both simulated and real images show the advantages of PnL-IOC on the accuracy and robustness of camera pose estimation over the existing PnL methods.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Egocentric Indoor Localization from Room Layouts and Image Outer Corners\",\"authors\":\"Xiaowei Chen, Guoliang Fan\",\"doi\":\"10.1109/ICCVW54120.2021.00385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Egocentric indoor localization is an important issue for many in-home smart technologies. Room layouts have been used to characterize indoor scene images by a few typical space configurations defined by boundary lines and junctions, which are mostly detectable or inferable by deep learning methods. In this paper, we study camera pose estimation for egocentric indoor localization from room layouts that is cast as a PnL (Perspective-n-Line) problem. Specifically, image outer corners (IOCs), which are the intersecting points between image borders and room layout boundaries, are introduced to improve PnL optimization by involving additional auxiliary lines in an image. This leads to a new PnL-IOC algorithm where 3D correspondence estimation of IOCs are jointly solved with camera pose optimization in the iterative Gauss-Newton algorithm. Experiment results on both simulated and real images show the advantages of PnL-IOC on the accuracy and robustness of camera pose estimation over the existing PnL methods.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以自我为中心的室内定位是许多家庭智能技术的重要问题。房间布局已经被用来通过一些由边界线和连接点定义的典型空间配置来表征室内场景图像,这些空间配置大多是通过深度学习方法可检测或推断的。在本文中,我们研究了自中心室内定位的相机姿态估计,并将其作为PnL (Perspective-n-Line)问题。具体来说,图像外角(IOCs)是图像边界和房间布局边界之间的交叉点,通过在图像中加入额外的辅助线来改善PnL优化。这就产生了一种新的PnL-IOC算法,该算法将ioc的三维对应估计与迭代高斯-牛顿算法中的相机姿态优化联合求解。在模拟和真实图像上的实验结果表明,与现有的PnL方法相比,PnL- ioc在相机姿态估计的精度和鲁棒性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Egocentric Indoor Localization from Room Layouts and Image Outer Corners
Egocentric indoor localization is an important issue for many in-home smart technologies. Room layouts have been used to characterize indoor scene images by a few typical space configurations defined by boundary lines and junctions, which are mostly detectable or inferable by deep learning methods. In this paper, we study camera pose estimation for egocentric indoor localization from room layouts that is cast as a PnL (Perspective-n-Line) problem. Specifically, image outer corners (IOCs), which are the intersecting points between image borders and room layout boundaries, are introduced to improve PnL optimization by involving additional auxiliary lines in an image. This leads to a new PnL-IOC algorithm where 3D correspondence estimation of IOCs are jointly solved with camera pose optimization in the iterative Gauss-Newton algorithm. Experiment results on both simulated and real images show the advantages of PnL-IOC on the accuracy and robustness of camera pose estimation over the existing PnL methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信