卵清蛋白黏性流动的玻璃化转变温度及活化能的温度依赖性

K. Monkos
{"title":"卵清蛋白黏性流动的玻璃化转变温度及活化能的温度依赖性","authors":"K. Monkos","doi":"10.1515/ctb-2016-0005","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents the results of viscosity determinations on aqueous solutions of ovalbumin at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and three models of viscosity for glass-forming liquids: Avramov’s model, free-volume model and power-law model, the activation energy of viscous flow for solutions and ovalbumin molecules, at different temperatures, was calculated. The obtained results show that activation energy monotonically decreases with increasing temperature both for solutions and ovalbumin molecules. The influence of the energy of translational heat motion, protein-protein and protein-solvent interactions, flexibility and hydrodynamic radius of ovalbumin on the rate of decrease in activation energy with temperature has been discussed. One of the parameters in the Avramov’s equation is the glass transition temperature Tg. It turns out that the Tg of ovalbumin solutions increases with increasing concentration. To obtain the glass transition temperature of the dry ovalbumin, a modified Gordon-Taylor equation is used. Thus determined the glass transition temperature for dry ovalbumin is equal to (231.8 ± 6.1) K.","PeriodicalId":333495,"journal":{"name":"Current Topics in Biophysics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Glass Transition Temperature and Temperature Dependence of Activation Energy of Viscous Flow of Ovalbumin\",\"authors\":\"K. Monkos\",\"doi\":\"10.1515/ctb-2016-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper presents the results of viscosity determinations on aqueous solutions of ovalbumin at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and three models of viscosity for glass-forming liquids: Avramov’s model, free-volume model and power-law model, the activation energy of viscous flow for solutions and ovalbumin molecules, at different temperatures, was calculated. The obtained results show that activation energy monotonically decreases with increasing temperature both for solutions and ovalbumin molecules. The influence of the energy of translational heat motion, protein-protein and protein-solvent interactions, flexibility and hydrodynamic radius of ovalbumin on the rate of decrease in activation energy with temperature has been discussed. One of the parameters in the Avramov’s equation is the glass transition temperature Tg. It turns out that the Tg of ovalbumin solutions increases with increasing concentration. To obtain the glass transition temperature of the dry ovalbumin, a modified Gordon-Taylor equation is used. Thus determined the glass transition temperature for dry ovalbumin is equal to (231.8 ± 6.1) K.\",\"PeriodicalId\":333495,\"journal\":{\"name\":\"Current Topics in Biophysics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics in Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ctb-2016-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ctb-2016-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文介绍了卵清蛋白水溶液粘度测定的结果,测定的温度范围从5°C到55°C。在此基础上,利用Avramov模型、自由体积模型和幂律模型,计算了溶液和卵清蛋白分子在不同温度下的粘性流动活化能。结果表明,溶液和卵清蛋白分子的活化能均随温度的升高而单调降低。讨论了平动热运动能、蛋白质-蛋白质和蛋白质-溶剂相互作用、卵清蛋白的柔韧性和流体动力半径对活化能随温度降低速率的影响。阿夫拉莫夫方程的参数之一是玻璃化转变温度Tg。结果表明,卵清蛋白溶液的Tg随浓度的增加而增加。为了得到干燥卵蛋白的玻璃化转变温度,采用了改进的Gordon-Taylor方程。由此确定干卵清蛋白的玻璃化转变温度为(231.8±6.1)K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Glass Transition Temperature and Temperature Dependence of Activation Energy of Viscous Flow of Ovalbumin
Abstract The paper presents the results of viscosity determinations on aqueous solutions of ovalbumin at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and three models of viscosity for glass-forming liquids: Avramov’s model, free-volume model and power-law model, the activation energy of viscous flow for solutions and ovalbumin molecules, at different temperatures, was calculated. The obtained results show that activation energy monotonically decreases with increasing temperature both for solutions and ovalbumin molecules. The influence of the energy of translational heat motion, protein-protein and protein-solvent interactions, flexibility and hydrodynamic radius of ovalbumin on the rate of decrease in activation energy with temperature has been discussed. One of the parameters in the Avramov’s equation is the glass transition temperature Tg. It turns out that the Tg of ovalbumin solutions increases with increasing concentration. To obtain the glass transition temperature of the dry ovalbumin, a modified Gordon-Taylor equation is used. Thus determined the glass transition temperature for dry ovalbumin is equal to (231.8 ± 6.1) K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信