一种基于二进制关联存储器的二进制数据聚类方法

Kazuma Kiyohara, Toshimichi Saito
{"title":"一种基于二进制关联存储器的二进制数据聚类方法","authors":"Kazuma Kiyohara, Toshimichi Saito","doi":"10.1109/ITC-CSCC58803.2023.10212661","DOIUrl":null,"url":null,"abstract":"This paper studies clustering methods for binary data based on nonlinear dynamics in a binary associative memory (BAM) characterized by ternary connection parameters and signum activation function. First, as a set of binary data is given, we select several the center candidates. Applying a simple learning rule to the candidates, we obtain a BAM having multiple fixed points. Second, each datum is applied as an initial point and basin of attraction to a fixed point gives a cluster of the datum. Third, the clustering is evaluated as compared with desired distribution on the clusters. Repeating these three steps, the algorithm explores better clusters. Applying the algorithm to typical examples, the algorithm efficiency is confirmed.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Clustering Method for Binary Data based on a Binary Associative Memory\",\"authors\":\"Kazuma Kiyohara, Toshimichi Saito\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies clustering methods for binary data based on nonlinear dynamics in a binary associative memory (BAM) characterized by ternary connection parameters and signum activation function. First, as a set of binary data is given, we select several the center candidates. Applying a simple learning rule to the candidates, we obtain a BAM having multiple fixed points. Second, each datum is applied as an initial point and basin of attraction to a fixed point gives a cluster of the datum. Third, the clustering is evaluated as compared with desired distribution on the clusters. Repeating these three steps, the algorithm explores better clusters. Applying the algorithm to typical examples, the algorithm efficiency is confirmed.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了以三元连接参数和sgn激活函数为特征的二元联想存储器(BAM)中基于非线性动力学的二元数据聚类方法。首先,作为给定的一组二进制数据,我们选择几个中心候选者。将一个简单的学习规则应用于候选对象,我们得到了一个具有多个不动点的BAM。其次,每个基准点被用作一个初始点,对一个固定点的吸引力盆地给出一个基准点簇。第三,将聚类与聚类上的期望分布进行比较。重复这三个步骤,算法探索更好的集群。通过典型算例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Clustering Method for Binary Data based on a Binary Associative Memory
This paper studies clustering methods for binary data based on nonlinear dynamics in a binary associative memory (BAM) characterized by ternary connection parameters and signum activation function. First, as a set of binary data is given, we select several the center candidates. Applying a simple learning rule to the candidates, we obtain a BAM having multiple fixed points. Second, each datum is applied as an initial point and basin of attraction to a fixed point gives a cluster of the datum. Third, the clustering is evaluated as compared with desired distribution on the clusters. Repeating these three steps, the algorithm explores better clusters. Applying the algorithm to typical examples, the algorithm efficiency is confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信