部分测量的模态分解

IF 1 4区 工程技术 Q4 MECHANICS
Clément Jailin , Stéphane Roux
{"title":"部分测量的模态分解","authors":"Clément Jailin ,&nbsp;Stéphane Roux","doi":"10.1016/j.crme.2019.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>A data set over space and time is assumed to have a low-rank representation in separated spatial and temporal modes. The problem of evaluating these modes from a temporal series of <em>partial measurements</em> is considered. Each elementary instantaneous measurement captures only a “window” (in space) of the observed data set, but the position of this window varies in time so as to cover the entire region of interest and would allow for a complete measurement would the scene be static. A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition (GPOD) methodology, is introduced. It is a fixed-point iterative procedure where modes are evaluated sequentially. Tested upon very sparse acquisition (1% of measurements being available) and very noisy synthetic data sets (10% noise), the proposed algorithm is shown to outperform two variants of the GPOD algorithm, with much faster convergence, and better reconstruction of the entire data set.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 863-872"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.011","citationCount":"1","resultStr":"{\"title\":\"Modal decomposition from partial measurements\",\"authors\":\"Clément Jailin ,&nbsp;Stéphane Roux\",\"doi\":\"10.1016/j.crme.2019.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A data set over space and time is assumed to have a low-rank representation in separated spatial and temporal modes. The problem of evaluating these modes from a temporal series of <em>partial measurements</em> is considered. Each elementary instantaneous measurement captures only a “window” (in space) of the observed data set, but the position of this window varies in time so as to cover the entire region of interest and would allow for a complete measurement would the scene be static. A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition (GPOD) methodology, is introduced. It is a fixed-point iterative procedure where modes are evaluated sequentially. Tested upon very sparse acquisition (1% of measurements being available) and very noisy synthetic data sets (10% noise), the proposed algorithm is shown to outperform two variants of the GPOD algorithm, with much faster convergence, and better reconstruction of the entire data set.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 11\",\"pages\":\"Pages 863-872\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.011\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301822\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301822","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

假设空间和时间上的数据集在分离的空间和时间模式中具有低秩表示。考虑了从部分测量的时间序列中评估这些模态的问题。每个基本的瞬时测量只捕获观测数据集的一个“窗口”(在空间上),但是该窗口的位置随时间变化,以便覆盖整个感兴趣的区域,并且在场景是静态的情况下允许进行完整的测量。介绍了一种替代Gappy固有正交分解(GPOD)方法的新方法。它是一个不动点迭代过程,模态按顺序求值。在非常稀疏的采集(1%的测量值可用)和非常嘈杂的合成数据集(10%的噪声)上进行测试,所提出的算法优于GPOD算法的两种变体,具有更快的收敛速度,并且更好地重建整个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal decomposition from partial measurements

A data set over space and time is assumed to have a low-rank representation in separated spatial and temporal modes. The problem of evaluating these modes from a temporal series of partial measurements is considered. Each elementary instantaneous measurement captures only a “window” (in space) of the observed data set, but the position of this window varies in time so as to cover the entire region of interest and would allow for a complete measurement would the scene be static. A novel procedure, alternative to the Gappy Proper Orthogonal Decomposition (GPOD) methodology, is introduced. It is a fixed-point iterative procedure where modes are evaluated sequentially. Tested upon very sparse acquisition (1% of measurements being available) and very noisy synthetic data sets (10% noise), the proposed algorithm is shown to outperform two variants of the GPOD algorithm, with much faster convergence, and better reconstruction of the entire data set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信