用贝叶斯序列概率检验监测动态回归模型中的结构断裂

Haixi Li
{"title":"用贝叶斯序列概率检验监测动态回归模型中的结构断裂","authors":"Haixi Li","doi":"10.2139/ssrn.3607315","DOIUrl":null,"url":null,"abstract":"Structural breaks are pervasive among macroeconomic and financial time series; consequently, forecasts may lose accuracy out of sample, which renders monitoring structural breaks a critical practice. We develop a structural break monitoring scheme, Bayesian Sequential Probability Test (BSPT), for dynamic regression models, which consists of two components: probabilistic detecting statistics, and a sequential stopping procedure. We demonstrate the finite sample property and effectiveness of the BSPT by comparing its performance with that of CUSUM under a variety of DGPs and in a few economic applications.","PeriodicalId":319022,"journal":{"name":"Economics of Networks eJournal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Structural Breaks in Dynamic Regression Models with Bayesian Sequential Probability Test\",\"authors\":\"Haixi Li\",\"doi\":\"10.2139/ssrn.3607315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural breaks are pervasive among macroeconomic and financial time series; consequently, forecasts may lose accuracy out of sample, which renders monitoring structural breaks a critical practice. We develop a structural break monitoring scheme, Bayesian Sequential Probability Test (BSPT), for dynamic regression models, which consists of two components: probabilistic detecting statistics, and a sequential stopping procedure. We demonstrate the finite sample property and effectiveness of the BSPT by comparing its performance with that of CUSUM under a variety of DGPs and in a few economic applications.\",\"PeriodicalId\":319022,\"journal\":{\"name\":\"Economics of Networks eJournal\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics of Networks eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3607315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics of Networks eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3607315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构性断裂在宏观经济和金融时间序列中普遍存在;因此,预测可能会失去样本的准确性,这使得监测结构断裂成为一项关键的实践。我们开发了一种结构断裂监测方案,贝叶斯序列概率检验(BSPT),用于动态回归模型,它由两个组成部分组成:概率检测统计和顺序停止过程。通过比较BSPT与CUSUM在各种DGPs和一些经济应用中的性能,我们证明了BSPT的有限样本特性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring Structural Breaks in Dynamic Regression Models with Bayesian Sequential Probability Test
Structural breaks are pervasive among macroeconomic and financial time series; consequently, forecasts may lose accuracy out of sample, which renders monitoring structural breaks a critical practice. We develop a structural break monitoring scheme, Bayesian Sequential Probability Test (BSPT), for dynamic regression models, which consists of two components: probabilistic detecting statistics, and a sequential stopping procedure. We demonstrate the finite sample property and effectiveness of the BSPT by comparing its performance with that of CUSUM under a variety of DGPs and in a few economic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信