基于极值寻求控制的代理函数优化

Mariya Raphel, Revati Gunjal, S. Wagh, N. Singh
{"title":"基于极值寻求控制的代理函数优化","authors":"Mariya Raphel, Revati Gunjal, S. Wagh, N. Singh","doi":"10.1109/ANZCC56036.2022.9966972","DOIUrl":null,"url":null,"abstract":"Real-time robust optimization of unknown expensive functions has been a challenging problem for data-driven based control applications. Most of the model-free control applications use function approximation technique based on measurements which makes it independent of the mathematical model. In surrogate optimization, the function is approximated using Gaussian Process Regression (GPR) which is a non-parametric approach. GPR based surrogate function makes the system robust by incorporating variance around the mean value, making the system tolerant against disturbances and noise. To make the optimization problem completely model-free, a zeroth-order gradient estimator is used to optimize the objective function. Extremum Seeking Control (ESC) is gradient-free technique that estimates the gradient by incorporating perturbation signals that drive the optimizer towards the optimal value. Using extremum seeking control, this paper provides a model-free, real-time, and robust optimization technique for optimising the surrogate function.","PeriodicalId":190548,"journal":{"name":"2022 Australian & New Zealand Control Conference (ANZCC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Surrogate function using Extremum Seeking Control\",\"authors\":\"Mariya Raphel, Revati Gunjal, S. Wagh, N. Singh\",\"doi\":\"10.1109/ANZCC56036.2022.9966972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time robust optimization of unknown expensive functions has been a challenging problem for data-driven based control applications. Most of the model-free control applications use function approximation technique based on measurements which makes it independent of the mathematical model. In surrogate optimization, the function is approximated using Gaussian Process Regression (GPR) which is a non-parametric approach. GPR based surrogate function makes the system robust by incorporating variance around the mean value, making the system tolerant against disturbances and noise. To make the optimization problem completely model-free, a zeroth-order gradient estimator is used to optimize the objective function. Extremum Seeking Control (ESC) is gradient-free technique that estimates the gradient by incorporating perturbation signals that drive the optimizer towards the optimal value. Using extremum seeking control, this paper provides a model-free, real-time, and robust optimization technique for optimising the surrogate function.\",\"PeriodicalId\":190548,\"journal\":{\"name\":\"2022 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC56036.2022.9966972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC56036.2022.9966972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于基于数据驱动的控制应用来说,未知昂贵函数的实时鲁棒优化一直是一个具有挑战性的问题。大多数无模型控制应用使用基于测量的函数逼近技术,使其独立于数学模型。在代理优化中,使用非参数方法高斯过程回归(GPR)逼近函数。基于探地雷达的代理函数通过加入均值周围的方差使系统具有鲁棒性,使系统对干扰和噪声具有容忍度。为了使优化问题完全无模型化,使用零阶梯度估计器对目标函数进行优化。极值寻求控制(ESC)是一种无梯度技术,它通过结合微扰信号来估计梯度,从而驱动优化器向最优值移动。利用极值寻优控制,提出了一种无模型、实时、鲁棒的代理函数优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Surrogate function using Extremum Seeking Control
Real-time robust optimization of unknown expensive functions has been a challenging problem for data-driven based control applications. Most of the model-free control applications use function approximation technique based on measurements which makes it independent of the mathematical model. In surrogate optimization, the function is approximated using Gaussian Process Regression (GPR) which is a non-parametric approach. GPR based surrogate function makes the system robust by incorporating variance around the mean value, making the system tolerant against disturbances and noise. To make the optimization problem completely model-free, a zeroth-order gradient estimator is used to optimize the objective function. Extremum Seeking Control (ESC) is gradient-free technique that estimates the gradient by incorporating perturbation signals that drive the optimizer towards the optimal value. Using extremum seeking control, this paper provides a model-free, real-time, and robust optimization technique for optimising the surrogate function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信