预测毒理学应用的分类器集成优化

M. Makhtar, Longzhi Yang, D. Neagu, M. Ridley
{"title":"预测毒理学应用的分类器集成优化","authors":"M. Makhtar, Longzhi Yang, D. Neagu, M. Ridley","doi":"10.1109/UKSIM.2012.41","DOIUrl":null,"url":null,"abstract":"Ensembles of classifiers proved potential in getting higher accuracy compared to a single classifier. High diversity in an ensemble may improve the performance results significantly. We propose an ensemble approach which has diversity calculated using disagreement measure of classification output. A CRS (Classifier Ranking System) is introduced for the selection of relevant classifiers. We also propose the Optimisation of Classifiers Ensemble Method (OCEM) technique which applies to the ensemble selection. In this paper, we focus on classification models for predictive toxicology applications, for which computational models are required to replace in vivo experiments. The results show that our method performs well in selecting the relevant ensemble model to improve the prediction from a collection of classifiers.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimisation of Classifier Ensemble for Predictive Toxicology Applications\",\"authors\":\"M. Makhtar, Longzhi Yang, D. Neagu, M. Ridley\",\"doi\":\"10.1109/UKSIM.2012.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensembles of classifiers proved potential in getting higher accuracy compared to a single classifier. High diversity in an ensemble may improve the performance results significantly. We propose an ensemble approach which has diversity calculated using disagreement measure of classification output. A CRS (Classifier Ranking System) is introduced for the selection of relevant classifiers. We also propose the Optimisation of Classifiers Ensemble Method (OCEM) technique which applies to the ensemble selection. In this paper, we focus on classification models for predictive toxicology applications, for which computational models are required to replace in vivo experiments. The results show that our method performs well in selecting the relevant ensemble model to improve the prediction from a collection of classifiers.\",\"PeriodicalId\":405479,\"journal\":{\"name\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSIM.2012.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2012.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

与单个分类器相比,集成分类器被证明具有获得更高精度的潜力。集成中的高多样性可以显著改善性能结果。我们提出了一种集成方法,该方法使用分类输出的不一致度量来计算多样性。介绍了一种分类器排序系统(CRS),用于选择相关分类器。我们还提出了用于集成选择的优化分类器集成方法(OCEM)技术。在本文中,我们重点研究了预测毒理学应用的分类模型,这些模型需要计算模型来代替体内实验。结果表明,我们的方法在选择相关的集成模型以改进分类器集合的预测方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of Classifier Ensemble for Predictive Toxicology Applications
Ensembles of classifiers proved potential in getting higher accuracy compared to a single classifier. High diversity in an ensemble may improve the performance results significantly. We propose an ensemble approach which has diversity calculated using disagreement measure of classification output. A CRS (Classifier Ranking System) is introduced for the selection of relevant classifiers. We also propose the Optimisation of Classifiers Ensemble Method (OCEM) technique which applies to the ensemble selection. In this paper, we focus on classification models for predictive toxicology applications, for which computational models are required to replace in vivo experiments. The results show that our method performs well in selecting the relevant ensemble model to improve the prediction from a collection of classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信