边缘设备上危险武器检测的双步神经网络基准测试

Daniele Berardini, A. Galdelli, A. Mancini, P. Zingaretti
{"title":"边缘设备上危险武器检测的双步神经网络基准测试","authors":"Daniele Berardini, A. Galdelli, A. Mancini, P. Zingaretti","doi":"10.1109/MESA55290.2022.10004469","DOIUrl":null,"url":null,"abstract":"Nowadays, criminal activities involving hand-held weapons are widespread throughout the world and pose a significant problem for the community. The development of Video Surveillance Systems (VSV) and Artificial Intelligence (AI) approaches have made it possible to implement automatic systems for detecting dangerous weapons even in crowded environments. However, the detection of hand-held weapons - usually very small in size with respect to the Field of View (FoV) of the camera - is still an open challenge. The use of complex hardware systems and deep learning (DL) architectures have mitigated this problem and achieved excellent results, but involve high costs and high performance that hinder the deployment of such systems. In this contest, we present a comprehensive performance comparison in terms of inference time and detection accuracy of two low-cost edge devices: Google Coral Dev board and NVIDIA Jetson Nano. We deployed and run on both boards a dual-step DL framework for hand-held weapons detection exploiting half-precision floating-point (FP16) quantization on Jetson Nano and 8-bit signed integer (INT8) quantization on Coral Dev. Our results show that both in terms of PASCAL VOC mean Average Precision (mAP) and Frames per Second (FPS), the framework running on Jetson Nano (mAP = 99.6, FPS = 4.5, 2.5, 1.7, 1.4 from 1 to 4 people in the camera FoV, respectively) slightly outperform the Coral's one (mAP = 98.8 and FPS = 2.9. 1.5, 1.1, 0.9 from 1 to 4 people in the camera FoV, respectively). The Coral Dev obtained the highest inference speed (FPS = 36.5) overcoming the Jetson Nano (FPS=23.8) only when running the dual-step framework with no people in the camera FoV. In conclusion, the benchmark on the two edge devices points out that both allow to run the framework with satisfactory results, pushing towards the diffusion of such on-the-edge systems in a real-world scenario.","PeriodicalId":410029,"journal":{"name":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Benchmarking of Dual-Step Neural Networks for Detection of Dangerous Weapons on Edge Devices\",\"authors\":\"Daniele Berardini, A. Galdelli, A. Mancini, P. Zingaretti\",\"doi\":\"10.1109/MESA55290.2022.10004469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, criminal activities involving hand-held weapons are widespread throughout the world and pose a significant problem for the community. The development of Video Surveillance Systems (VSV) and Artificial Intelligence (AI) approaches have made it possible to implement automatic systems for detecting dangerous weapons even in crowded environments. However, the detection of hand-held weapons - usually very small in size with respect to the Field of View (FoV) of the camera - is still an open challenge. The use of complex hardware systems and deep learning (DL) architectures have mitigated this problem and achieved excellent results, but involve high costs and high performance that hinder the deployment of such systems. In this contest, we present a comprehensive performance comparison in terms of inference time and detection accuracy of two low-cost edge devices: Google Coral Dev board and NVIDIA Jetson Nano. We deployed and run on both boards a dual-step DL framework for hand-held weapons detection exploiting half-precision floating-point (FP16) quantization on Jetson Nano and 8-bit signed integer (INT8) quantization on Coral Dev. Our results show that both in terms of PASCAL VOC mean Average Precision (mAP) and Frames per Second (FPS), the framework running on Jetson Nano (mAP = 99.6, FPS = 4.5, 2.5, 1.7, 1.4 from 1 to 4 people in the camera FoV, respectively) slightly outperform the Coral's one (mAP = 98.8 and FPS = 2.9. 1.5, 1.1, 0.9 from 1 to 4 people in the camera FoV, respectively). The Coral Dev obtained the highest inference speed (FPS = 36.5) overcoming the Jetson Nano (FPS=23.8) only when running the dual-step framework with no people in the camera FoV. In conclusion, the benchmark on the two edge devices points out that both allow to run the framework with satisfactory results, pushing towards the diffusion of such on-the-edge systems in a real-world scenario.\",\"PeriodicalId\":410029,\"journal\":{\"name\":\"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MESA55290.2022.10004469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA55290.2022.10004469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如今,涉及手持武器的犯罪活动在世界各地普遍存在,给社会造成了严重的问题。视频监控系统(VSV)和人工智能(AI)方法的发展使得即使在拥挤的环境中也可以实现自动检测危险武器的系统。然而,对手持武器的探测——相对于摄像机的视场(FoV)来说通常是非常小的——仍然是一个公开的挑战。复杂硬件系统和深度学习(DL)架构的使用缓解了这一问题,并取得了出色的效果,但涉及高成本和高性能,阻碍了此类系统的部署。在本次竞赛中,我们对两种低成本边缘设备:Google Coral Dev board和NVIDIA Jetson Nano在推理时间和检测精度方面进行了全面的性能比较。我们在Jetson Nano上部署并运行了一个双步深度学习框架,用于手持武器检测,利用半精度浮点(FP16)量化,在Coral Dev上利用8位符号整数(INT8)量化。我们的结果表明,在PASCAL VOC平均平均精度(mAP)和每秒帧数(FPS)方面,在Jetson Nano上运行的框架(mAP = 99.6, FPS = 4.5, 2.5, 1.7, 1.4)从1到4人的相机FoV,分别)略优于珊瑚的一个(地图= 98.8和FPS = 2.9。1.5, 1.1, 0.9,从1到4人在相机视场分别)。Coral Dev仅在没有人的情况下运行双步框架时,才获得了超越Jetson Nano (FPS=23.8)的最高推理速度(FPS= 36.5)。总之,在两个边缘设备上的基准测试指出,两者都允许以令人满意的结果运行框架,推动这种边缘系统在现实世界场景中的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking of Dual-Step Neural Networks for Detection of Dangerous Weapons on Edge Devices
Nowadays, criminal activities involving hand-held weapons are widespread throughout the world and pose a significant problem for the community. The development of Video Surveillance Systems (VSV) and Artificial Intelligence (AI) approaches have made it possible to implement automatic systems for detecting dangerous weapons even in crowded environments. However, the detection of hand-held weapons - usually very small in size with respect to the Field of View (FoV) of the camera - is still an open challenge. The use of complex hardware systems and deep learning (DL) architectures have mitigated this problem and achieved excellent results, but involve high costs and high performance that hinder the deployment of such systems. In this contest, we present a comprehensive performance comparison in terms of inference time and detection accuracy of two low-cost edge devices: Google Coral Dev board and NVIDIA Jetson Nano. We deployed and run on both boards a dual-step DL framework for hand-held weapons detection exploiting half-precision floating-point (FP16) quantization on Jetson Nano and 8-bit signed integer (INT8) quantization on Coral Dev. Our results show that both in terms of PASCAL VOC mean Average Precision (mAP) and Frames per Second (FPS), the framework running on Jetson Nano (mAP = 99.6, FPS = 4.5, 2.5, 1.7, 1.4 from 1 to 4 people in the camera FoV, respectively) slightly outperform the Coral's one (mAP = 98.8 and FPS = 2.9. 1.5, 1.1, 0.9 from 1 to 4 people in the camera FoV, respectively). The Coral Dev obtained the highest inference speed (FPS = 36.5) overcoming the Jetson Nano (FPS=23.8) only when running the dual-step framework with no people in the camera FoV. In conclusion, the benchmark on the two edge devices points out that both allow to run the framework with satisfactory results, pushing towards the diffusion of such on-the-edge systems in a real-world scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信