{"title":"基于cnn的城市激光雷达缺点目标分割","authors":"Allan Zelener, I. Stamos","doi":"10.1109/3DV.2016.51","DOIUrl":null,"url":null,"abstract":"We examine the task of point-level object segmentation in outdoor urban LIDAR scans. A key challenge in this area is the problem of missing points in the scans due to technical limitations of the LIDAR sensors. Our core contributions are demonstrating the benefit of reframing the segmentation task over the scan acquisition grid as opposed to considering only the acquired 3D point cloud and developing a pipeline for training and applying a convolutional neural network to accomplish this segmentation on large scale LIDAR scenes. By labeling missing points in the scanning grid we show that we can train our classifier to achieve a more accurate and complete segmentation mask for the vehicle object category which is particularly prone to missing points. Additionally we show that the choice of input features maps to the CNN significantly effect the accuracy of the segmentation and these features should be chosen to fully encapsulate the 3D scene structure. We evaluate our model on a LIDAR dataset collected by Google Street View cars over a large area of New York City.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"CNN-Based Object Segmentation in Urban LIDAR with Missing Points\",\"authors\":\"Allan Zelener, I. Stamos\",\"doi\":\"10.1109/3DV.2016.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the task of point-level object segmentation in outdoor urban LIDAR scans. A key challenge in this area is the problem of missing points in the scans due to technical limitations of the LIDAR sensors. Our core contributions are demonstrating the benefit of reframing the segmentation task over the scan acquisition grid as opposed to considering only the acquired 3D point cloud and developing a pipeline for training and applying a convolutional neural network to accomplish this segmentation on large scale LIDAR scenes. By labeling missing points in the scanning grid we show that we can train our classifier to achieve a more accurate and complete segmentation mask for the vehicle object category which is particularly prone to missing points. Additionally we show that the choice of input features maps to the CNN significantly effect the accuracy of the segmentation and these features should be chosen to fully encapsulate the 3D scene structure. We evaluate our model on a LIDAR dataset collected by Google Street View cars over a large area of New York City.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2016.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CNN-Based Object Segmentation in Urban LIDAR with Missing Points
We examine the task of point-level object segmentation in outdoor urban LIDAR scans. A key challenge in this area is the problem of missing points in the scans due to technical limitations of the LIDAR sensors. Our core contributions are demonstrating the benefit of reframing the segmentation task over the scan acquisition grid as opposed to considering only the acquired 3D point cloud and developing a pipeline for training and applying a convolutional neural network to accomplish this segmentation on large scale LIDAR scenes. By labeling missing points in the scanning grid we show that we can train our classifier to achieve a more accurate and complete segmentation mask for the vehicle object category which is particularly prone to missing points. Additionally we show that the choice of input features maps to the CNN significantly effect the accuracy of the segmentation and these features should be chosen to fully encapsulate the 3D scene structure. We evaluate our model on a LIDAR dataset collected by Google Street View cars over a large area of New York City.