{"title":"利用嵌入式电容材料在PCB上实现最小PDN阻抗、SSN和抖动","authors":"Chang Fei Yee","doi":"10.1109/RFM.2018.8846556","DOIUrl":null,"url":null,"abstract":"In this paper, the imperativeness of low power distribution network (PDN) impedance on printed circuit board (PCB) with high frequency signals operating at hundreds of Mega-Hz range and the impact of embedded capacitance material (ECM) in minimizing wideband PDN impedance are discussed. The study to compare the performance of PCB with ECM versus conventional dielectric FR4 material was conducted with post-layout power integrity simulation using Keysight ADS on the power net of interest, followed by measurement of PDN impedance and simultaneous switching noise (SSN) using network analyzer (VNA) and oscilloscope respectively on prototype PCB. Lastly, eye diagram and jitter of the high frequency clock signal on the PCB are observed. The correlated simulation and measurement results are presented and discussed in the later section of this paper.","PeriodicalId":111726,"journal":{"name":"2018 IEEE International RF and Microwave Conference (RFM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Achieving Minimal PDN Impedance, SSN and Jitter on PCB with Embedded Capacitance Material\",\"authors\":\"Chang Fei Yee\",\"doi\":\"10.1109/RFM.2018.8846556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the imperativeness of low power distribution network (PDN) impedance on printed circuit board (PCB) with high frequency signals operating at hundreds of Mega-Hz range and the impact of embedded capacitance material (ECM) in minimizing wideband PDN impedance are discussed. The study to compare the performance of PCB with ECM versus conventional dielectric FR4 material was conducted with post-layout power integrity simulation using Keysight ADS on the power net of interest, followed by measurement of PDN impedance and simultaneous switching noise (SSN) using network analyzer (VNA) and oscilloscope respectively on prototype PCB. Lastly, eye diagram and jitter of the high frequency clock signal on the PCB are observed. The correlated simulation and measurement results are presented and discussed in the later section of this paper.\",\"PeriodicalId\":111726,\"journal\":{\"name\":\"2018 IEEE International RF and Microwave Conference (RFM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International RF and Microwave Conference (RFM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFM.2018.8846556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM.2018.8846556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving Minimal PDN Impedance, SSN and Jitter on PCB with Embedded Capacitance Material
In this paper, the imperativeness of low power distribution network (PDN) impedance on printed circuit board (PCB) with high frequency signals operating at hundreds of Mega-Hz range and the impact of embedded capacitance material (ECM) in minimizing wideband PDN impedance are discussed. The study to compare the performance of PCB with ECM versus conventional dielectric FR4 material was conducted with post-layout power integrity simulation using Keysight ADS on the power net of interest, followed by measurement of PDN impedance and simultaneous switching noise (SSN) using network analyzer (VNA) and oscilloscope respectively on prototype PCB. Lastly, eye diagram and jitter of the high frequency clock signal on the PCB are observed. The correlated simulation and measurement results are presented and discussed in the later section of this paper.