David Koerner, Jan Novák, Peter Kutz, R. Habel, Wojciech Jarosz
{"title":"路径跟踪地下散射的细分下一事件估计","authors":"David Koerner, Jan Novák, Peter Kutz, R. Habel, Wojciech Jarosz","doi":"10.2312/sre.20161214","DOIUrl":null,"url":null,"abstract":"We present subdivision next-event estimation (SNEE) for unbiased Monte Carlo simulation of subsurface scattering. Our technique is designed to sample high frequency illumination through geometrically complex interfaces with highly directional scattering lobes enclosing a scattering medium. This case is difficult to sample and a common source of image noise. We explore the idea of exploiting the degree of freedom given by path vertices within the interior medium to find two-bounce connections to the light that satisfy the law of refraction. SNEE first finds a surface point by tracing a probe ray and then performs a subdivision step to place an intermediate vertex within the medium according to the incoming light at the chosen surface point. Our subdivision construction ensures that the path will connect to the light while obeying Fermat's principle of least time. We discuss the details of our technique and demonstrate the benefits of integrating SNEE into a forward path tracer.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering\",\"authors\":\"David Koerner, Jan Novák, Peter Kutz, R. Habel, Wojciech Jarosz\",\"doi\":\"10.2312/sre.20161214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present subdivision next-event estimation (SNEE) for unbiased Monte Carlo simulation of subsurface scattering. Our technique is designed to sample high frequency illumination through geometrically complex interfaces with highly directional scattering lobes enclosing a scattering medium. This case is difficult to sample and a common source of image noise. We explore the idea of exploiting the degree of freedom given by path vertices within the interior medium to find two-bounce connections to the light that satisfy the law of refraction. SNEE first finds a surface point by tracing a probe ray and then performs a subdivision step to place an intermediate vertex within the medium according to the incoming light at the chosen surface point. Our subdivision construction ensures that the path will connect to the light while obeying Fermat's principle of least time. We discuss the details of our technique and demonstrate the benefits of integrating SNEE into a forward path tracer.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/sre.20161214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/sre.20161214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subdivision Next-Event Estimation for Path-Traced Subsurface Scattering
We present subdivision next-event estimation (SNEE) for unbiased Monte Carlo simulation of subsurface scattering. Our technique is designed to sample high frequency illumination through geometrically complex interfaces with highly directional scattering lobes enclosing a scattering medium. This case is difficult to sample and a common source of image noise. We explore the idea of exploiting the degree of freedom given by path vertices within the interior medium to find two-bounce connections to the light that satisfy the law of refraction. SNEE first finds a surface point by tracing a probe ray and then performs a subdivision step to place an intermediate vertex within the medium according to the incoming light at the chosen surface point. Our subdivision construction ensures that the path will connect to the light while obeying Fermat's principle of least time. We discuss the details of our technique and demonstrate the benefits of integrating SNEE into a forward path tracer.