{"title":"如何学习未知的环境","authors":"Xiaotie Deng, T. Kameda, C. Papadimitriou","doi":"10.1109/SFCS.1991.185382","DOIUrl":null,"url":null,"abstract":"The authors consider the problem faced by a newborn that must explore and learn an unknown room with obstacles in it. They seek algorithms that achieve a bounded ratio of the worst-case distance traversed in order to see all visible points of the environment (thus creating a map), divided by the optimum distance needed to verify the map. The situation is complicated by the fact that the latter offline problem (optimally verifying a map) is NP-hard and thus must be solved approximately. Although the authors show that there is no such competitive algorithm for general obstacle courses, they give a competitive algorithm for the case of a polygonal room with a bounded number of obstacles in it.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":"{\"title\":\"How to learn an unknown environment\",\"authors\":\"Xiaotie Deng, T. Kameda, C. Papadimitriou\",\"doi\":\"10.1109/SFCS.1991.185382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors consider the problem faced by a newborn that must explore and learn an unknown room with obstacles in it. They seek algorithms that achieve a bounded ratio of the worst-case distance traversed in order to see all visible points of the environment (thus creating a map), divided by the optimum distance needed to verify the map. The situation is complicated by the fact that the latter offline problem (optimally verifying a map) is NP-hard and thus must be solved approximately. Although the authors show that there is no such competitive algorithm for general obstacle courses, they give a competitive algorithm for the case of a polygonal room with a bounded number of obstacles in it.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The authors consider the problem faced by a newborn that must explore and learn an unknown room with obstacles in it. They seek algorithms that achieve a bounded ratio of the worst-case distance traversed in order to see all visible points of the environment (thus creating a map), divided by the optimum distance needed to verify the map. The situation is complicated by the fact that the latter offline problem (optimally verifying a map) is NP-hard and thus must be solved approximately. Although the authors show that there is no such competitive algorithm for general obstacle courses, they give a competitive algorithm for the case of a polygonal room with a bounded number of obstacles in it.<>