基于卷积兴趣区域建模和记忆增强关注LSTM的时间感知位置预测(扩展摘要)

Chi Harold Liu, Yu Wang, Chengzhe Piao, Zipeng Dai, Ye Yuan, Guoren Wang, Dapeng Oliver Wu
{"title":"基于卷积兴趣区域建模和记忆增强关注LSTM的时间感知位置预测(扩展摘要)","authors":"Chi Harold Liu, Yu Wang, Chengzhe Piao, Zipeng Dai, Ye Yuan, Guoren Wang, Dapeng Oliver Wu","doi":"10.1109/ICDE55515.2023.00357","DOIUrl":null,"url":null,"abstract":"Personalized location prediction is key to many mobile applications and services. In this paper, motivated by both statistical and visualized preliminary analysis on three real datasets, we observe a strong spatiotemporal correlation for user trajectories among the visited area-of-interests (AoIs) and different time periods on both weekly and daily basis, which directly motivates our time-aware location prediction model design called \"t-LocPred\". It models the spatial correlations among AoIs by coarse-grained convolutional processing of the user trajectories in AoIs of different time periods (\"ConvAoI\"); and predicts his/her fine-grained next visited PoI using a novel memory-augmented attentive LSTM model (\"mem-attLSTM\") to capture long-term behavior patterns. Experimental results show that t-LocPred outperforms 8 baselines. We also show the impact of hyperparameters and the benefits ConvAoI can bring to these baselines.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Aware Location Prediction by Convolutional Area-of-Interest Modeling and Memory-Augmented Attentive LSTM (Extended abstract)\",\"authors\":\"Chi Harold Liu, Yu Wang, Chengzhe Piao, Zipeng Dai, Ye Yuan, Guoren Wang, Dapeng Oliver Wu\",\"doi\":\"10.1109/ICDE55515.2023.00357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized location prediction is key to many mobile applications and services. In this paper, motivated by both statistical and visualized preliminary analysis on three real datasets, we observe a strong spatiotemporal correlation for user trajectories among the visited area-of-interests (AoIs) and different time periods on both weekly and daily basis, which directly motivates our time-aware location prediction model design called \\\"t-LocPred\\\". It models the spatial correlations among AoIs by coarse-grained convolutional processing of the user trajectories in AoIs of different time periods (\\\"ConvAoI\\\"); and predicts his/her fine-grained next visited PoI using a novel memory-augmented attentive LSTM model (\\\"mem-attLSTM\\\") to capture long-term behavior patterns. Experimental results show that t-LocPred outperforms 8 baselines. We also show the impact of hyperparameters and the benefits ConvAoI can bring to these baselines.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个性化的位置预测是许多移动应用和服务的关键。通过对三个真实数据集的统计分析和可视化初步分析,我们观察到每周和每天访问兴趣区域(aoi)和不同时间段之间的用户轨迹具有很强的时空相关性,这直接激励了我们的时间感知位置预测模型设计,称为“t-LocPred”。它通过对不同时间段aoi中的用户轨迹进行粗粒度卷积处理(“ConvAoI”)来建模aoi之间的空间相关性;并使用一种新颖的记忆增强细心LSTM模型(“memm - attlstm”)来预测他/她的细粒度下一次访问PoI,以捕获长期行为模式。实验结果表明,t-LocPred优于8个基线。我们还展示了超参数的影响以及ConvAoI可以给这些基线带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Aware Location Prediction by Convolutional Area-of-Interest Modeling and Memory-Augmented Attentive LSTM (Extended abstract)
Personalized location prediction is key to many mobile applications and services. In this paper, motivated by both statistical and visualized preliminary analysis on three real datasets, we observe a strong spatiotemporal correlation for user trajectories among the visited area-of-interests (AoIs) and different time periods on both weekly and daily basis, which directly motivates our time-aware location prediction model design called "t-LocPred". It models the spatial correlations among AoIs by coarse-grained convolutional processing of the user trajectories in AoIs of different time periods ("ConvAoI"); and predicts his/her fine-grained next visited PoI using a novel memory-augmented attentive LSTM model ("mem-attLSTM") to capture long-term behavior patterns. Experimental results show that t-LocPred outperforms 8 baselines. We also show the impact of hyperparameters and the benefits ConvAoI can bring to these baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信