基于像素差调整、最小生成树和加权中值滤波的局部立体匹配算法

Y. Gan, R. Hamzah, Ns. Nik Anwar
{"title":"基于像素差调整、最小生成树和加权中值滤波的局部立体匹配算法","authors":"Y. Gan, R. Hamzah, Ns. Nik Anwar","doi":"10.1109/SPC.2018.8704131","DOIUrl":null,"url":null,"abstract":"This paper proposed a new algorithm framework for stereo vision system. A four stage taxonomy is applied to obtain disparity map or depth map. The initial stage started with matching cost computation based on pixel difference adjustment strategies. In this stage, the proposed algorithm uses combination of Absolute Difference (AD) and Gradient Matching (GM) that focus on simple computation and radiometric distortion reduction. Next, the second stage continues with cost aggregation that apply image segmentation technique. Minimum spanning tree method is applied for object boundary preservation. During the third stage; disparity optimization takes a local approach by using Winner-Takes-All (WTA) strategy. This strategy normalizes the disparity values of each pixel of the image. Finally, the disparity refinement stage, noise smothering and reduction is applied on the final disparity with the aid of weighted median (WM) filter.","PeriodicalId":432464,"journal":{"name":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Local Stereo Matching Algorithm Based on Pixel Difference Adjustment, Minimum Spanning Tree and Weighted Median Filter\",\"authors\":\"Y. Gan, R. Hamzah, Ns. Nik Anwar\",\"doi\":\"10.1109/SPC.2018.8704131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new algorithm framework for stereo vision system. A four stage taxonomy is applied to obtain disparity map or depth map. The initial stage started with matching cost computation based on pixel difference adjustment strategies. In this stage, the proposed algorithm uses combination of Absolute Difference (AD) and Gradient Matching (GM) that focus on simple computation and radiometric distortion reduction. Next, the second stage continues with cost aggregation that apply image segmentation technique. Minimum spanning tree method is applied for object boundary preservation. During the third stage; disparity optimization takes a local approach by using Winner-Takes-All (WTA) strategy. This strategy normalizes the disparity values of each pixel of the image. Finally, the disparity refinement stage, noise smothering and reduction is applied on the final disparity with the aid of weighted median (WM) filter.\",\"PeriodicalId\":432464,\"journal\":{\"name\":\"2018 IEEE Conference on Systems, Process and Control (ICSPC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Systems, Process and Control (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPC.2018.8704131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2018.8704131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的立体视觉系统算法框架。采用四阶段分类法获得视差图或深度图。初始阶段从基于像素差调整策略的匹配成本计算开始。在此阶段,该算法采用了绝对差分(AD)和梯度匹配(GM)相结合的方法,以简化计算和降低辐射失真为重点。接下来,第二阶段继续使用应用图像分割技术的成本聚合。采用最小生成树方法进行目标边界保存。在第三阶段;差异优化采用局部方法,采用赢者通吃策略。该策略将图像的每个像素的视差值归一化。最后,借助加权中值(WM)滤波器对最终视差进行视差细化和噪声抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Stereo Matching Algorithm Based on Pixel Difference Adjustment, Minimum Spanning Tree and Weighted Median Filter
This paper proposed a new algorithm framework for stereo vision system. A four stage taxonomy is applied to obtain disparity map or depth map. The initial stage started with matching cost computation based on pixel difference adjustment strategies. In this stage, the proposed algorithm uses combination of Absolute Difference (AD) and Gradient Matching (GM) that focus on simple computation and radiometric distortion reduction. Next, the second stage continues with cost aggregation that apply image segmentation technique. Minimum spanning tree method is applied for object boundary preservation. During the third stage; disparity optimization takes a local approach by using Winner-Takes-All (WTA) strategy. This strategy normalizes the disparity values of each pixel of the image. Finally, the disparity refinement stage, noise smothering and reduction is applied on the final disparity with the aid of weighted median (WM) filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信