频谱利用率测量的时变和变频噪声本底估计

Hiroki Iwata, K. Umebayashi, Ahmed Al-Tahmeesschi, M. López-Benítez, Janne J. Lehtomäki
{"title":"频谱利用率测量的时变和变频噪声本底估计","authors":"Hiroki Iwata, K. Umebayashi, Ahmed Al-Tahmeesschi, M. López-Benítez, Janne J. Lehtomäki","doi":"10.1109/WCNCW.2019.8902886","DOIUrl":null,"url":null,"abstract":"We investigate noise floor (NF) estimation for FFT-ED (Energy Detection based on FFT)-based spectrum usage measurement in the context of smart spectrum access (SSA), in which spectrum usage information of primary users (PUs), such as channel occupancy rate (COR), will be exploited by secondary users (SUs). In FFT-ED, the NF has to be estimated to set a decision threshold for ED appropriately. In general, the NF is frequency-dependent and its level changes with time leading to the need of estimating the NF regularly while performing the spectrum usage measurement. In this paper, we propose an NF estimation method which exploits prior information regarding the shape of NF and forward consecutive mean excision (FCME) algorithm. Numerical and experimental evaluations show the proposed method enables an accurate NF estimation considering the time and frequency dependencies of the NF. Moreover, we show the proposed method can obtain the almost desired detection performance, but can not the comparative method (the original FCME method).","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Time and Frequency Varying Noise Floor Estimation for Spectrum Usage Measurement\",\"authors\":\"Hiroki Iwata, K. Umebayashi, Ahmed Al-Tahmeesschi, M. López-Benítez, Janne J. Lehtomäki\",\"doi\":\"10.1109/WCNCW.2019.8902886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate noise floor (NF) estimation for FFT-ED (Energy Detection based on FFT)-based spectrum usage measurement in the context of smart spectrum access (SSA), in which spectrum usage information of primary users (PUs), such as channel occupancy rate (COR), will be exploited by secondary users (SUs). In FFT-ED, the NF has to be estimated to set a decision threshold for ED appropriately. In general, the NF is frequency-dependent and its level changes with time leading to the need of estimating the NF regularly while performing the spectrum usage measurement. In this paper, we propose an NF estimation method which exploits prior information regarding the shape of NF and forward consecutive mean excision (FCME) algorithm. Numerical and experimental evaluations show the proposed method enables an accurate NF estimation considering the time and frequency dependencies of the NF. Moreover, we show the proposed method can obtain the almost desired detection performance, but can not the comparative method (the original FCME method).\",\"PeriodicalId\":121352,\"journal\":{\"name\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2019.8902886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在智能频谱接入(SSA)的背景下,我们研究了基于FFT- ed(基于FFT的能量检测)的频谱使用测量的本底噪声(NF)估计,其中主用户(pu)的频谱使用信息,如信道占用率(COR),将被次要用户(su)利用。在FFT-ED中,必须对NF进行估计,以适当地设置ED的决策阈值。一般来说,NF是频率相关的,其水平随时间而变化,因此在进行频谱使用测量时需要定期估计NF。在本文中,我们提出了一种利用关于NF形状的先验信息和前向连续均值切除(FCME)算法的NF估计方法。数值和实验结果表明,该方法考虑了信号的时间和频率依赖性,能够准确地估计出信号。此外,我们还表明,该方法可以获得几乎理想的检测性能,但无法与比较方法(原始的FCME方法)相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time and Frequency Varying Noise Floor Estimation for Spectrum Usage Measurement
We investigate noise floor (NF) estimation for FFT-ED (Energy Detection based on FFT)-based spectrum usage measurement in the context of smart spectrum access (SSA), in which spectrum usage information of primary users (PUs), such as channel occupancy rate (COR), will be exploited by secondary users (SUs). In FFT-ED, the NF has to be estimated to set a decision threshold for ED appropriately. In general, the NF is frequency-dependent and its level changes with time leading to the need of estimating the NF regularly while performing the spectrum usage measurement. In this paper, we propose an NF estimation method which exploits prior information regarding the shape of NF and forward consecutive mean excision (FCME) algorithm. Numerical and experimental evaluations show the proposed method enables an accurate NF estimation considering the time and frequency dependencies of the NF. Moreover, we show the proposed method can obtain the almost desired detection performance, but can not the comparative method (the original FCME method).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信