考虑基于音节韵律特征的基于gpr的语音合成增强F0生成

Decha Moungsri, Tomoki Koriyama, Takao Kobayashi
{"title":"考虑基于音节韵律特征的基于gpr的语音合成增强F0生成","authors":"Decha Moungsri, Tomoki Koriyama, Takao Kobayashi","doi":"10.1109/APSIPA.2017.8282285","DOIUrl":null,"url":null,"abstract":"The conventional frame-level Gaussian process regression (GPR)-based F0 generation can produce natural sounding pitch contours. However, a frame-level model is insufficient to represent pitch patterns in longer unit, especially for syllable- level tone contours in tonal languages. This paper proposes a multi-level modeling technique for improving GPR-based F0 generation, in which syllable-level model is considered as well as the frame-level model. In the syllable-level model, we use the discrete cosine transform (DCT) coefficients extracted from log F0 contour in syllable unit as the output variables of Gaussian process. F0 contours are generated by jointly maximizing predictive distribution of frame- and syllable-level models. Experimental results of objective evaluation show improvement in F0 generation when using a small amount of training data around 30 minutes.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced F0 generation for GPR-based speech synthesis considering syllable-based prosodic features\",\"authors\":\"Decha Moungsri, Tomoki Koriyama, Takao Kobayashi\",\"doi\":\"10.1109/APSIPA.2017.8282285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional frame-level Gaussian process regression (GPR)-based F0 generation can produce natural sounding pitch contours. However, a frame-level model is insufficient to represent pitch patterns in longer unit, especially for syllable- level tone contours in tonal languages. This paper proposes a multi-level modeling technique for improving GPR-based F0 generation, in which syllable-level model is considered as well as the frame-level model. In the syllable-level model, we use the discrete cosine transform (DCT) coefficients extracted from log F0 contour in syllable unit as the output variables of Gaussian process. F0 contours are generated by jointly maximizing predictive distribution of frame- and syllable-level models. Experimental results of objective evaluation show improvement in F0 generation when using a small amount of training data around 30 minutes.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的基于帧级高斯过程回归(GPR)的F0生成方法可以生成自然的音高轮廓。然而,框架级模型不足以表示较长单位的音高模式,特别是对于声调语言中音节级的音调轮廓。为了改进基于gpr的F0生成,本文提出了一种多级建模技术,其中考虑了音节级模型和框架级模型。在音节级模型中,我们使用从音节单位的log F0轮廓中提取的离散余弦变换(DCT)系数作为高斯过程的输出变量。F0轮廓是通过联合最大化框架级和音节级模型的预测分布来生成的。客观评价的实验结果表明,在30分钟左右使用少量训练数据时,F0生成有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced F0 generation for GPR-based speech synthesis considering syllable-based prosodic features
The conventional frame-level Gaussian process regression (GPR)-based F0 generation can produce natural sounding pitch contours. However, a frame-level model is insufficient to represent pitch patterns in longer unit, especially for syllable- level tone contours in tonal languages. This paper proposes a multi-level modeling technique for improving GPR-based F0 generation, in which syllable-level model is considered as well as the frame-level model. In the syllable-level model, we use the discrete cosine transform (DCT) coefficients extracted from log F0 contour in syllable unit as the output variables of Gaussian process. F0 contours are generated by jointly maximizing predictive distribution of frame- and syllable-level models. Experimental results of objective evaluation show improvement in F0 generation when using a small amount of training data around 30 minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信