利用基于活动转换的完整性和精度的遗传算法发现非结构化业务流程

G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers
{"title":"利用基于活动转换的完整性和精度的遗传算法发现非结构化业务流程","authors":"G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers","doi":"10.1109/CEC.2018.8477795","DOIUrl":null,"url":null,"abstract":"Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Unstructured Business Processes Through Genetic Algorithms Using Activity Transitions-Based Completeness and Precision\",\"authors\":\"G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers\",\"doi\":\"10.1109/CEC.2018.8477795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过程模型发现可以作为一个优化问题来处理,而遗传算法在此问题上已经被使用。然而,所使用的适应度函数(考虑完整的日志跟踪)还不足以发现非结构化过程。我们提出了一种基于活动转换的局部分析的解决方案,它被证明对组织中最常见的非结构化过程是有效的。我们的解决方案考虑了适应度函数的完备性和精度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of Unstructured Business Processes Through Genetic Algorithms Using Activity Transitions-Based Completeness and Precision
Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信