G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers
{"title":"利用基于活动转换的完整性和精度的遗传算法发现非结构化业务流程","authors":"G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers","doi":"10.1109/CEC.2018.8477795","DOIUrl":null,"url":null,"abstract":"Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Unstructured Business Processes Through Genetic Algorithms Using Activity Transitions-Based Completeness and Precision\",\"authors\":\"G. A. D. Silva, M. Fantinato, S. M. Peres, H. Reijers\",\"doi\":\"10.1109/CEC.2018.8477795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of Unstructured Business Processes Through Genetic Algorithms Using Activity Transitions-Based Completeness and Precision
Process model discovery can be approached as an optimization problem, for which genetic algorithms have been used previously. However, the fitness functions used, which consider full log traces, have not been found adequate to discover unstructured processes. We propose a solution based on a local analysis of activity transitions, which proves effective for unstructured processes, most common in organizations. Our solution considers completeness and accuracy calculation for the fitness function.